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ABSTRACT

Collisions play a major role in various models of musical instru-
ments; one particularly interesting case is that of the guitar fret-
board, the subject of this paper. Here, the string is modelled in-
cluding effects of tension modulation, and the distributedcollision
both with the fretboard and individual frets, and includingboth ef-
fects of free string vibration, and under finger-stopped conditions,
requiring an additional collision model. In order to handlemultiple
distributed nonlinearities simultaneously, a finite difference time
domain method is developed, with a penalty potential allowing for
a convenient model of collision within a Hamiltonian framework,
allowing for the construction of stable energy-conservingmeth-
ods. Implementation details are discussed, and simulationresults
are presented illustrating a variety of features of such a model.

1. INTRODUCTION

Physical modeling synthesis to date has relied, mainly, on lin-
ear models of distributed components, accompanied by pointwise
nonlinearities often related to excitation mechanisms (such as, for
example, models of the bow, hammer, or lip-reed interaction). See,
e.g., [1] for an overview. In the pursuit of more realistic sound syn-
thesis, recent research has focused on inherent nonlinearities in the
distributed components themselves, beginning with the introduc-
tion of tension modulation effects in strings [2, 3, 4], shock wave
effects in acoustic tubes [5], geometric nonlinearities instrings [6],
and in 2D systems such as membranes and plates [7]. A distinct
form of distributed nonlinearity, and one which is of great signif-
icance to models of strings is the contact between a distributed
vibrating object with a rigid barrier.

The problem of the string in contact with a rigid barrier has
seen research in the realm of musical acoustics for almost a cen-
tury, going back to early investigations of Indian stringedinstru-
ments such as the sitar or tambura [8], and continuing to the present
day, particularly using a geometric analysis for barriers of simpli-
fied forms [9, 10]. In practical sound synthesis applications, where
the barrier may well be of a complex shape, and in musical acous-
tics investigations, more flexible methods have been employed, in-
cluding digital waveguides [11, 12, 13, 14, 15], modal techniques
[16], and time-stepping methods such as finite difference methods
[11, 17, 14, 18].

The particular case of the interaction of a string with a fret,
modelled as a lumped barrier element, in order to emulate realis-
tic playing in fretted instruments such as the guitar has been re-
searched by Evangelista [12, 19], which is the case of interest in
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this paper. Here, a distributed view of the barrier is taken,includ-
ing frets and the backing fretboard. Finite difference timedomain
methods are employed, with special attention paid to the problem
of numerical stability, which is especially pronounced here, due
to the inherently non-smooth form of the collision interaction. To
this end, a formalism based upon the use of an added potential, al-
lowing the use of a Hamiltonian framework, but permitting some
spurious penetration of the string into the barrier is employed.
The action of a stopping finger, in order to simulate finger mo-
tion against the fretboard, is also included here. The modelhere
is complementary to that of Evangelista mentioned above, inthat
here, string motion is taken to be perpendicular to the fretboard—
in a full model, both polarizations need to be taken into account.
Finger plucking interactions have been described previously—see,
e.g., [20]

Section 2 presents a complete model of string vibration in
a single polarization, including tension modulation effects, dis-
tributed collision against a barrier of arbitrary shape, a plucking
excitation, as well as a further collision due to stopping ofa finger
against the fretboard. An energy analysis completes this section.
Section 3 is a concise presentation of finite difference timedomain
construction, with a discussion of numerical stability, arrived at
through an analogous energy analysis, and implementation issues,
and in particular a vector nonlinear equation to be solved ateach
time step. Simulation results, illustrating various features of such
a model, are presented in Section 4. Sound synthesis examples are
available online athttp://www.ness-music.eu

2. STRING MODEL

A model of constrained string vibration may be written in a com-
pact form as

ρ∂ttu = L[u] +K[u] + Fe + Fc − Ff (1)

Here,u(x, t) is the transverse displacement of a string in a single
polarization (assumed here to be perpendicular to a constraining
surface, to be described shortly), as a function of timet ≥ 0 and
x ∈ D = [0, L], whereL is string length when at rest. The string
is of linear mass densityρ kg/m, and∂tt represents double partial
differentiation with respect to timet. See Figure 1. Because this
model of a string is in a single polarization only, it is thus capable
of modelling only string plucks perpendicular to the fretboard—
which is a great simplification from the true situation, but one al-
lowing for an analysis of many of the important features of such
an instrument.

The linear operatorL is defined, in terms of its action on the
functionu, as

L[u] = (T∂xx −EI∂xxxx − 2σ0ρ∂t + 2σ1ρ∂txx)u (2)
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Figure 1: Diagram of string, of displacementu(x, t), in contact
with a barrier b(x), as indicated in blue. An excitation force den-
sityFe is applied over a distributionge, and a force densityFf is
applied by a finger (indicated in green) over a distributiongf . A
collision force densityFc results at points of contact between the
string and barrier.

and describes the linear dynamics of the string, where partial dif-
ferentiation with respect tox is indicated by∂x. The four terms
model, respectively, string tension, stiffness, frequency-independent
loss, and frequency-dependent loss. Here,T is string tension, in
N, E is Young’s modulus, in Pa,I is the string moment of inertia
(and equal toπr4/4, for a string of circular cross-section and ra-
dius r m), andσ0 andσ1 are loss parameters, which may be set
according to comparison with measured data. Such a linear model
is relatively standard in the musical acoustics literature(with some
variation in the way in which the frequency-dependent loss terms
are modelled [21, 22]).

The nonlinear operatorK is defined as

K[u] =
EA

2L

(∫

D

(∂xu)
2 dx

)

∂xxu (3)

whereA is the string cross-sectional area in m2, and describes ef-
fects of tension modulation in the string, giving rise to variations
in pitch with excitation amplitude, or pitch glides; such a model
is due to Kirchhoff [23] and Carrier [24], and has seen extensive
use in sound synthesis applications [2, 3, 4, 25]. This is a partic-
ularly simple form of string nonlinearity—more realistic effects,
including the generation of phantom partials [26, 6], may beob-
tained using a complete form which models the coupling between
transverse and longitudinal motion in the string.

The final three terms in (1) represent force densities due, re-
spectively, to a plucking action, collision of the string with the
fretboard, and the stopping motion of a finger, and will be defined
in the following sections.

2.1. Excitation

A relatively simple model of excitation will be employed here,
namely that of a force density

Fe = gefe

where here,fe(t) is an applied force in N, and wherege(x) is
a distribution selecting the region of application of the excitation
(chosen normalized, with

∫

D
ge dx = 1, and perhaps as a Dirac

delta functionge(x) = δ(x − xe), for a plucking pointx = xe).
In some models of plucking excitation [27], a relatively smooth
form of excitation function is employed:

fe(t) =

(

fp
2
(1− cos(π(t− t0)/tp)) t0 ≤ t ≤ tp

0 else
(4)

This function is characterized by a small set of parameters,namely:
start timet0, durationtp, and maximum forcefp.

One could go further here and specify a full model of the
plucking finger, but as this is not the focus of this paper, andalso
because in general, the duration of a pluck is extremely short (on
the order of 1-10 ms) the simple form above will be employed, as
in previous work on guitar synthesis [28]. More involved models
are available—see, e.g., [29, 30].

2.2. The Fretboard

The string is assumed to vibrate above a rigid barrier of height
b(x)—in the case of a fretboard, the function will include the pro-
file of the board itself, as well as pointwise protuberances (the frets
themselves). To this end, suppose that the function is of theform
b(x) = bback(x), almost everywhere, wherebback(x) is a smooth
function representing the fretboard itself, in the absenceof the
frets. At locationsxm, m = 1, . . . , Nfret at which theNfret

frets are located, the function takes on the valuesb(xm) = b
(m)
fret.

See Figure 1.
The force densityFc acts upwards on the string, and may be

defined in terms of a potential densityΦc ≥ 0 as

Fc =
∂tΦc

∂tηc
where ηc = b− u (5)

The potentialΦc (ηc) here is to be viewed as a penalty density, ac-
tive whenever and whereverηc, the difference between the barrier
height and string height is positive, implying interpenetration, and
thus repelling the string. A useful form of the penalty potential Φc

is of the form of a power lawΦc = ΦK,α(ηc), where, for a value
or distributionp

ΦK,α (p) =
K

α+ 1
[p]α+1

+ [p]+ =
1

2
(p+ |p|)

whereK ≥ 0, andα ≥ 1. In simulation, the degree of inter-
penetration can be controlled through a proper choice ofK and
α—see Section 4.2. Note that, under this choice of the potential,
Fc = K[ηc]

α
+, and so this collision model is of a form similar

to that seen in lumped models of impact, such as that of Hertz
[31], and commonly used in models of striking action in musical
instruments [22, 32]; here, however, it is to be viewed as an ap-
proximation to an ideal elastic collision. The form in (5), written
in terms of a potential, however, is more useful when it comesto
simulation design—see Section 3.

2.3. Finger-stopping

Another separate collision which must be taken into accountin a
full articulated model of such a stringed instrument is the action
of a stopping finger pressing the string against the frets or fret-
board. This collision is slightly different from the case ofthe bar-
rier/string collision described in the previous section, as the finger
must be permitted its own dynamics, including damping effects,
and is subject to external control. In this case, where the string
is assumed to move transverse to the fretboard, rubbing friction
effects against the fret are not included—see [12].

For a lumped model of such a finger, the force densityFf ,
now acting downward on the string from above, may be written as

Ff = gfff
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Here,gf = gf (x, t) is an externally specified function represent-
ing the region of contact of the finger with the string at timet,
again chosen normalized, with

∫

D
gf dx = 1, andff is the force

applied to the string, in N. The position of the finger,uf , may be
described by

Mf
d2uf

dt2
= ff − f0

where here,Mf is the finger mass, in kg, and wheref0 = f0(t) is
an external force signal supplied by the player.

As in the case of the string/barrier collision, the interaction
force ff depends on a measureηf of the relative displacement
between the string and finger at the stopping location:

ff =
dΦf/dt

dηf/dt
+

dηf
dt

Ξf ηf =

∫

D

gfu dx− uf (6)

Here again,Φf (ηf ) ≥ 0 is a collision potential—now, however,
it is intended to model elastic deformation of the finger under the
pressing action; the model here is identical to that of a striking
piano hammer, with losses taken into account, and under a contin-
uous excitation force. As in the case of the hammer, a choice of
collision potentialΦf = ΦKf ,αf

(ηf ) is reasonable, where again
Kf ≥ 0 andαf ≥ 1. Also modelled here are losses, through a
functionΞf (ηf ) ≥ 0. The model of Hunt and Crossley [33] is
appropriate here, withΞf = ΞKf ,αf ,βf

, where

ΞKf ,αf ,βf
(ηf ) = βfKf

dηf
dt

[ηf ]
α
+

for some constantβf ≥ 0.

2.4. Energy Balance

System (1) includes three separate nonlinearities, due to tension
modulation, collision, and finger stopping, as well as non-autonomous
time variation due to the finger-stopping distributiongf , and thus
frequency-domain analysis will thus be of virtually no use in de-
signing a numerical method. To this end, it is useful to present an
energy balance for the system.

It may be easily verified, through the multiplication of (1) by
∂tu, integrating over the domainD, and employing integration by
parts, that the complete model described above satisfies an energy
balance of the form

dH

dt
= −Q+P+B (7)

where here, at timet, H(t) represents the total stored energy of the
system,Q(t) is total dissipated power,P(t) is input power, andB
represents energy supplied to the string at the boundaries at x = 0
andx = L.

In particular,

H = HL + HK + Hc + Hf

Q = QL +Qf

P = Pe +Pf

where, for the stored energy terms corresponding to linear string
vibration, nonlinear string vibration, the collision interaction, and

the finger interaction, respectively, one has

HL =

∫

D

ρ

2
(∂tu)

2 +
T

2
(∂xu)

2 +
EI

2
(∂xxu)

2 dx

HK =
EA

8L

(∫

D

∂xu dx

)2

Hc =

∫

D

Φc dx

Hf =
Mf

2

(

duf

dt

)2

+ Φf

For the individual power loss termsQL andQf in the string and
finger, respectively, one has

QL =

∫

D

2ρσ0 (∂tu)
2 + 2ρσ1 (∂txu)

2 dx

Qf =

(

dηf
dt

)2

Ξf (ηf )

For the supplied power termsPe andPf from the excitation and
stopping finger, respectively, one has

Pe = fe

∫

D

ge∂tu dx

Pf = ff

∫

D

u∂tgf dx−
duf

dt
f0

The boundary power termB is given by

B =

(

T +
EA

2L

(
∫

D

∂xu dx

)2
)

∂tu∂xu

−EI (∂tu∂xxxu− ∂txu∂xxu)− 2ρσ1∂tu∂xtu|
x=L
x=0

In this study, boundary conditions are chosen as simply supported
(i.e.,u = ∂xxu = 0 at x = 0 andx = L), and thusB vanishes
identically.

Under unforced conditions (i.e., with no excitation forcefe,
no applied finger stopping forcef0, and no time variation of the
stopping finger distributiongf ), note thatH ≥ 0, andQ ≥ 0, and
thus, for allt ≥ 0

dH

dt
≤ 0 −→ 0 ≤ H(t) ≤ H(0)

and the system as a whole is dissipative. If, furthermore, loss is
not present (i.e., ifσ0 = σ1 = Ξf = 0), then the system is exactly
lossless. Such an energy balance serves as a useful design principle
in arriving at numerically stable simulation methods. See Section
3.

3. TIME STEPPING METHODS

In this section, the basic techniques underlying the construction
of time-domain finite difference schemes are presented, in acon-
densed vectorized form. For a more expanded treatment of such
methods, see, e.g., [34], or, in the context of physical modeling
synthesis, [35].
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3.1. Grid Functions and Difference Operators

The grid functionun
l , for integern ≥ 0 and l = 0, . . . , N , rep-

resents an approximation to the functionu(x, t) at timet = nk
andx = lh. Here,k is the time step (andfs = 1/k is the sample
rate, chosen a priori), andh is the grid spacing, chosen such that it
divides the lengthL evenly asN = L/h.

In this case, where the system under study is 1D, and because
the boundary conditions are of simple form (that is, simply sup-
ported), it is useful to move directly to a vector representation
of the state, namely the column vectorun = [un

1 , . . . , u
n
N−1]

T .
Here, the valuesun

0 and uN
N have been omitted from the vec-

tor form, and thus need not be calculated, as they are identically
zero—this choice has implications for the matrix representations
of various spatial difference operators, as will be described shortly.

For any vectorwn, unit time shiftset+ andet− are defined as

et+w
n = w

n+1 et−w
n = w

n−1

The forward, backward and centered difference approximations to
a first time derivative may thus be defined as

δt+ =
et+ − 1

k
δt− =

1− et−
k

δt· =
et+ − et−

2k
(8)

and time averaging operators as

µt+ =
et+ + 1

2
µt− =

1 + et−
2

µt· =
et+ + et−

2
(9)

An approximation to a second time derivative follows as

δtt = δt+δt− =
et+ − 2 + et−

k2
(10)

Forward and backward approximations to spatial differentia-
tion ∂x, when applied to the grid functionun, and taking into ac-
count the simply supported boundary condition, may be written in
matrix form asDx+ andDx−, whereDx+ is anN × (N − 1)
matrix, andDx− is (N − 1)×N :

Dx+ =
1

h















1
−1 1

. . .
. . .
−1 1

−1















Dx− = −D
T
x+

whereT indicates the transpose operation.
Approximations to the second and fourth spatial derivative,

Dxx andDxxxx respectively, both(N − 1) × (N − 1) matrices,
may be written, under simply supported conditions, as

Dxx = Dx−Dx+ Dxxxx = DxxDxx

3.2. Finite Difference Scheme

A finite difference time domain scheme for (1) may then be writ-
ten, in vector-matrix form, in terms of the grid functionun, as

ρδttu
n = l[un] + k[un] + fne + fnc − fnf (11)

Here, in analogy with definition (2) for the linear operatorL,
the linear discrete operatorl is defined as

l[un] = (TDxx − EIDxxxx − 2σ0ρδt· + 2σ1ρδt−Dxx)u
n

(12)

and the nonlinear operatork as

k[un] =
EAh

2L
(Dx+u

n)T (µt·Dx+u
n)Dxxu

n (13)

Note the use of the time averaging operatorµt· in (13) above, nec-
essary in arriving at a stable scheme [36].

3.3. Discrete Force Densities

The discrete force density termsfne , fnc andfnf given in (11) are all
(N − 1) element column vectors.

The discrete force excitation densityfne may be written asfne =
gef

n
e wherege corresponds toge(x), with h1Tge = 1, where1

is anN − 1 element column vector consisting of ones, and where
fn
e is sampled fromfe(t), as defined in (4).

The discrete collision force due to the interaction with thebar-
rier fnc requires a more detailed treatment. Because one would
like to model collision between the string and the fretboardat
the N − 1 grid points at which the string is defined, and also
at theNfret locations at which the frets themselves are defined
(which, in general, do not lie at grid locations), it is useful to write
fnc = Gcf

n
c , wherefc is anNc = N − 1 + Nfret element force

vector, andGc is an(N − 1)×Nc matrix interpolant. In particu-
lar,Gc = 1

h
[IN−1|Gfret], whereIN−1 is the(N −1)× (N−1)

identity matrix, and whereGfret is an(N − 1) × Nfret matrix,
themth column of which is an interpolant to themth fret location
xm. Any form of interpolant (i.e., bilinear, Lagrangian, etc.) may
be employed in this construction.

For the collision itself, one may then write, in analogy with
(5),

f
n
c =

δt·Φ
n
c

δt·ηn
c

ηn
c = b− hGT

c u
n (14)

in terms of theNc element vectorsΦn
c , ηn

c andbn. This lat-
ter vector, representing the barrier profile, may be decomposed as
b = [bT

back|b
T
fret]

T , wherebback is theN − 1 element column
vector consisting of samples of the fretboard profileb(x) at the
grid locations, andbfret is anNfret element column vector con-
sisting of the fret heightsb(m)

fret, m = 1, . . . , Nfret. As in the con-
tinuous case, a power law potential may be employed, such that
Φn

c = ΦK,α (ηn
c ). (Here and henceforth, expressions such as the

first in (14) represent a vector resulting from element-by-element
division of two vectors.)

The finger force densityfnf may be written asfnf = µt·

(

gn
f

)

fn
f ,

where as in the case of the excitation,gn
f is anN − 1 element nor-

malized column vector—note in particular that it is time-varying,
allowing for gestural control of the finger-stopping action. The
finger force may be discretized, in analogy with (6), as

fn
f =

δt·Φ
n
f

δt·ηn
f

+ δt·η
n
fΞ

n
f ηn

f = h
(

g
n
f

)T
u
n − un

f (15)

whereΦn
f = ΦKf ,αf

(ηn
f ), and whereΞn

f = ΞKf ,αf ,βf
(ηn

f ). Fi-
nally, the equation of motion of the finger, in terms of displacement
un
f may be written as

Mfδttu
n
f = fn

f − fn
0

3.4. Discrete Energy Balance and Stability Conditions

In analogy with the energy balance (7) for the continuous system,
a discrete energy balance follows for the scheme presented in Sec-
tion 3.2:

δt−h
n+1/2 = −qn + pn + bn (16)
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where here,hn+1/2 represents the total stored energy of the system
(written here as interleaved with respect to values calculated in the
scheme itself),qn is total dissipated power,pn is input power, and
bn represents energy supplied to the string at the boundaries at
l = 0 andl = N—in this case,bn = 0 by construction, so may be
safely ignored in the remainder of this analysis. Here, the various
terms may be decomposed as

hn+1/2 = h
n+1/2
L + h

n+1/2
K + hn+1/2

c + h
n+1/2
f

qn = qnL + qnf

pn = pne + pnf

where, for the stored energy terms corresponding to linear string
vibration, nonlinear string vibration, the collision interaction, and
the finger interaction, respectively, one has

h
n+1/2
L =

ρh

2
|δt+u

n|2 +
Th

2
(Dx+u

n)T Dx+u
n+1

+
EIh

2
(Dxxu

n)T Dxxu
n+1 −

ρσ1hk

2
|δt+Dx+u

n|2

h
n+1/2
K =

EAh2

8L

(

(Dx+u
n)T Dx+u

n+1
)2

hn+1/2
c = 1

Tµt+Φ
n
c

h
n+1/2
f =

Mf

2

(

δt+u
n
f

)2
+ Φn

f

and for the power loss terms,

qnL = 2ρσ0h|δt·u
n|2 + 2ρσ1h|δt·Dx+u

n|2

qf =
(

δt·η
n
f

)2
Ξn

f

For the supplied power termspne andpnf from the excitation and
stopping finger, respectively, one has

pne = fn
e h (δt·u

n)T ge

pnf = fn
f h (µt·u

n)T δt·g
n
f − δt·u

n
f f

n
0

Considering the discrete power balance (16), under unforced
conditions (i.e.,pne = pnf = 0), note that the loss termsqnL and
qnf are non-negative; the only stored energy term which is not
non-negative is that corresponding to the string energyhL. It is
straightforward to show [35] that under the conditionh ≥ hmin,
where

h2
min =

k

2





Tk

ρ
+ 4σ1 +

√

(

Tk

ρ
+ 4σ1

)2

+
16EI

ρ



 (17)

the termhL is non-negative; this condition serves as a stability con-
dition for the entire scheme. Again, under lossless conditions (i.e.,
with σ0 = σ1 = Ξn = 0), the scheme is numerically lossless.
See Section 4.4. Notice that condition (17) is equivalent tothat
arrived at using von Neumann analysis [34] for the linear string in
isolation, though now for the complete system involving multiple
nonlinearities.

3.5. Vector-matrix Update Form

In the interest of illustrating how such a scheme may be used in
practice, it is useful to rewrite it in a vector-matrix update form as

A
n
u
n+1 = Bu

n +C
n
u
n−1 + jef

n
e + J

n
f
n (18)

where here,An,B andCn are(N−1)×(N−1)matrices defined
as

A
n = (1 + σ0k) IN−1 + (an) (an)T

B = 2IN−1 +

(

k2T

ρ
+ 2σ1k

)

Dxx −
EIk2

ρ
Dxxxx

C
n = (σ0k − 1) IN−1 − (an) (an)T − 2σ1kDxx

Due to the tension modulation nonlinearity,An andCn are de-
pendent on previously computed state values through the column
vectoran, defined as

a
n =

k

2

√

EAh

ρL
Dxxu

n

The vectorje is defined asje = k2ge/ρ, andfn = [(fnc )
T |fn

f ]
T

is the consolidation of the contact forces due to the barrierand fin-
ger, with the combined matrixJn given byJn = k2Gn/ρ, where
Gn = [Gc| − gn

f ]. Notice thatJn andGn include effects of time
variation due to the motion of the stopping finger.

The update form (18) requires the determination of the colli-
sion force vectorfn; to this end, it may be rewritten as

u
n+1 = q

n + J̃
n
f
n (19)

where

q
n = (An)−1 (

Bu
n +C

n
u
n−1 + jef

n
e

)

J̃
n = (An)−1

J

Though the calculation ofqn andJ̃n might appear to require the
full inversion of a matrixAn (or at least a linear system solution),
note thatAn is a rank one perturbation of a scaled identity matrix,
and thus the inverse may be written directly, using the Sherman-
Morrison-Woodbury formula [37] as

(An)−1 =
1

1 + σ0k

(

IN−1 −
(an) (an)T

1 + σ0k + (an)T (an)

)

which leads to a matrix multiplication withO(N) operations.

3.6. A Nonlinear Equation

Define the set of collision distancesηn asηn = [(ηn
c )

T |ηn
f ]

T .
From the definitions (14) and (15), one then has

ηn =

[

b

−un
f

]

− hGn
u
n

From this, one may further define the vectorrn = [(rnc )
T |rnf ]

T

asrn = ηn+1 − ηn−1, andrn may be written as

r
n = γn−Zf

n−h
(

(

G
n+1
)T

u
n+1 −

(

G
n−1
)T

u
n−1
)

(20)

where

γn =

[

0Nc,1

−2
(

un
f − un−1

f

)

+ k2

Mf
fn
0

]

where0Nc,1 is anNc element column vector, andZ is an(Nc +
1)× (Nc +1) matrix, all zero, except for a value ofk2/Mf as the
entry at the lower right corner.

For the forces, from the definitions (14) and (15), one has

f
n = Λ

n +P
n
r
n (21)
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whereΛn is a diagonal(Nc+1)× (Nc +1) matrix with diagonal
entries given bydiag (Λn) = [(λn

c )
T |λn

f ]
T , with

λn
c =

φc

(

rnc + ηn−1
c

)

− φc

(

ηn−1
c

)

rnc

and

λn
f =

φf

(

rnf + ηn−1
f

)

− φf

(

ηn−1
f

)

rnf

and wherePn is an(Nc + 1) × (Nc + 1) matrix, all zero except
for a value ofΞn

f /(2k) in the lower right hand entry.
Finally, (19), (20) and (21) may be consolidated into a single

vector nonlinear equation as

Q
n
r
n +M

nΛn + l
n = 0

where

M
n = Z

n + h
(

G
n+1)T

J̃
n

Q
n = INc+1 +M

n
P

n

l
n = −γn + h

(

G
n+1)T

q
n − h

(

G
n−1)T

u
n−1

Numerically, such an equation may be solved using an iterative
method such as, e.g., Newton-Raphson.

4. SIMULATION RESULTS

In this section, various features of simulations for the system de-
scribed above are explored.

4.1. Visualization: Free Vibration

As a first example, consider a string positioned above a fretboard
and a series of 12 frets, under a plucking action—see Figure 2,
showing the time evolution of the string profile under different
plucking forces. In one case, the string vibration is free from colli-
sion, but in the other, it is sufficient to allow for rebounding against
the frets, greatly distorting the profile of the string subsequently. It
should be noted that under normal lossy conditions, string vibra-
tion amplitude is decreased over time, and thus the collision with
the fretboard will lead to transients; similarly, stiffness effects in
the string lead to dispersion, also decreasing the maximum string
displacement after the initial pluck.

4.2. Spurious Penetration

The penalty potential formulation intended to model the rigid col-
lision between string and fretboard allows some unphysicalpene-
tration of the string into the fretboard itself. One question which
emerges is then: how large is this penetration? For the plucked
excitation simulation described in the previous section, the maxi-
mum penetration over the length of the string is plotted as a func-
tion of time step in Figure 3—in this case, it takes on values under
10−9 m, which is definitely acceptable in any acoustics simulation.
The degree of penetration may be controlled through the choice of
K—the larger it is, the less the penetration, with the side effect
that the number of iterations required in Newton’s method tends to
increase. See Section 5 for more commentary on this point.
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Figure 2: Time evolution of the profile of a string in contact
with a fretboard (in blue), under plucking excitations of different
amplitudes—in black, with a maximal excitation offp = 0.5 N,
and in red, withfp = 1 N. In this case, the string is of parameters
L = 0.65 m,ρ = 5.25×10−3 kg/m,T = 60 N,E = 2×1011 Pa,
with radiusr = 4.3 × 10−4 m, and loss parametersσ0 = 1.38
and σ1 = 1.25 × 10−4. The barrier collision parameters are
K = 1015 andα = 2.3, and the pluck occurs pointwise at loca-
tion x = 0.52 m. The sample rate is 88.2 kHz.
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Figure 3:Maximal penetration, in m, as a function of time stepn,
for the simulation described in Section 4.1.

4.3. Visualization: Finger Tap

As a further example, consider the string under the application of a
tapping gesture on the fretboard, as illustrated in Figure 4. In this
case, the tapping is modelled (crudely!) as an unforced finger with
an initial velocity rebounding from the string, accompanied by an
intermediate pinning action against the fretboard itself.See Figure
4, illustrating the interaction of the finger with a string backed by
a fretboard and a series of 12 frets, with parameters for the string
and finger as given in the caption.

4.4. Energy Partition

In this example, the system has been assumed lossless, such that
a plot of the energy partition for the system over time may be
shown, as in Figure 5 at left; the finger energy is transferredfirst
to the linear and nonlinear energy components of the string,then
to the stored energy of the collision, when the string is in con-
tact with the fretboard, and finally fully back to the finger, which
rebounds with a speed identical to its initial speed. Noticein

DAFX-6



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =0ms

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =0.499ms

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =0.998ms

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =1.5ms

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =2ms

0 0.2 0.4 0.6

−2

0

2

x (m)

u
(m

m
)

t =2.49ms

Figure 4:Collision of an unforced finger (in green), with a string
(in black) in contact with a fretboard (in blue). In this case, the
string/fretboard parameters are as given in the caption to Figure
2, and the finger is of mass5 × 10−3 kg, and approaches the
string with velocity 3 m/s, at a position 0.012 from the end ofthe
string. The finger collision potential parameters areKf = 1010

andαf = 2.3 and the sample rate is 88.2 kHz.

particular contact/recontact phenomena visible in the energy of
the string/fretboard collision. Energy is conserved to roughly 14
places in this case, as is visible in a plot of the normalized energy
variation at right in Figure 5.
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Figure 5: Left: energy partition for the system of parameters as
given in the caption to Figure 4, as a function of time stepn. Lin-
ear string energyhL (red), nonlinear string energyhK , (blue),
string/barrier collision energyhc (green), finger energyhf (cyan)
and total energyh (black). Right: normalized energy variation
ǫ = (hn+1/2 − h1/2)/h1/2.

4.5. Time-varying Finger Position

As a final example, consider the same system, under the applica-
tion of a sliding finger stop position—see Figure 6, showing snap-
shots of the string profile as the finger, under a constant applied

force, slides across a single fret, effecting a pitch change. Here,
the finger is assumed to act pointwise, at the position as indicated;
notice in particular that due to the finite string stiffness,the slope
of the string exhibits a strong variation at the fret location, and the
minimum may occur at a location slightly shifted from that ofthe
finger.
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Figure 6: Time evolution of string profile, for a
string/barrier/finger system of parameters as described in
the previous sections, where the finger, modelled pointwise, slides
over a single fret during a playing gesture.

5. CONCLUDING REMARKS

This paper is intended as an exploration of various featuresof
string vibration in a more realistic setting, particularlyinvolving
the non-trivial contact of various components, including abarrier
intended to represent a fretboard. Various features have been ne-
glected here. The most important of these is the modelling of
vibration in both polarizations; here, only the polarization trans-
verse to the barrier has been modelled, allowing for an examina-
tion in particular of a colliding finger. In the case of excitation in
the other polarization, however, a different nonlinear mechanism
is required for the finger stopping, which closely resemblesthat
of the bow-string interaction—see [12]. The other important ele-
ment, not modelled here, is coupling to a body (in the case of,say,
an acoustic guitar), and perhaps to the surrounding acoustic space.
When such features are included, one is not far from a fully artic-
ulated model of a guitar, leaving, then, the enormous problem of
gestural control—which is not considered here.

From a numerical point of view, a Hamiltonian potential for-
mulation has been used here in order to arrive at a stable numerical
method. As with all such stable methods, this leads to an implicit
design in the nonlinear part of the problem (note that the linear
part of the scheme, in isolation, remains explicit), and ultimately
to a nonlinear vector algebraic equation to be solved at eachtime
step. Though it is possible to show, for very simple systems such
as a lumped mass colliding with a rigid barrier [38], and certain ex-
tensions to the distributed case [18], that a unique solution exists,
in this vector case, a means of showing existence and uniqueness
is not immediately forthcoming—meaning that, when an iterative
method such as Newton-Raphson is employed it may either (a)
not converge, or (b) converge to one solution which may be spu-
rious. Thus an open question, for this and all nontrivial collision
problems, is the determination of such uniqueness and existence
conditions.

Beyond this basic question, at the level of the iterative solver
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employed (in this case, Newton Raphson, but many others are
available), there are further issues—one is that, even if existence
and uniqueness results are available, convergence of a particular
iterative method is not ensured. Another is that, in general, the it-
erative solver can prove to be something of a bottleneck not merely
in terms of the over-all operation count (here, 50 iterations have
been employed, for results to machine accuracy, though thiscan
be significantly reduced for audio synthesis), but also in parallel
implementations, where reducing the number of iterations (which
must be performed serially) is of paramount importance.
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