
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

TSM TOOLBOX: MATLAB IMPLEMENTATIONS OF TIME-SCALE MODIFICATION
ALGORITHMS

Jonathan Driedger, Meinard Müller,

International Audio Laboratories Erlangen,∗

Erlangen, Germany
{jonathan.driedger,meinard.mueller}@audiolabs-erlangen.de

ABSTRACT

Time-scale modification (TSM) algorithms have the pur-
pose of stretching or compressing the time-scale of an in-
put audio signal without altering its pitch. Such tools are
frequently used in scenarios like music production or music
remixing. There exists a large variety of different algorith-
mic approaches to TSM, all of them having their very own
advantages and drawbacks. In this paper, we present the
TSM toolbox, which contains MATLAB implementations
of several conceptually different TSM algorithms. In partic-
ular, our toolbox provides the code for a recently proposed
TSM approach, which integrates different classical TSM al-
gorithms in combination with harmonic-percussive source
separation (HPSS). Furthermore, our toolbox contains sev-
eral demo applications and additional code examples. Pro-
viding MATLAB code on a well-documented website under
a GNU-GPL license and including illustrative examples, our
aim is to foster research and education in the field of audio
processing.

1. INTRODUCTION

Time-scale modification (TSM) is the task of manipulat-
ing an audio signal such that it sounds as if its content was
performed at a different tempo. TSM finds application for
example in music remixing where it is used to adjust the
playback speed of existing recordings such that they can be
played simultaneously at the same tempo [1, 2]. Another
field of application is the adjustment of the audio streams in
video clips. For example, when generating a slow motion
video, TSM can be used to synchronize the audio material
with the visual content [3].

There exists a large variety of different TSM algorithms
which all have their respective advantages and drawbacks.
Some of the TSM procedures yield results of high percep-
tual quality only when applied to a certain class of audio sig-
nals. For example, ‘classical’ well-known TSM algorithms
like WSOLA [4] or the phase vocoder [5, 6] are capable of

∗ The International Audio Laboratories Erlangen are a joint institu-
tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS.

Figure 1: General processing pipeline of TSM procedures.

preserving the perceptual quality of harmonic signals to a
high degree, but introduce noticeable artifacts when modi-
fying percussive signals. However, it has been shown that
it is possible to substantially reduce artifacts by combining
different TSM procedures. For example, in [7], a given au-
dio signal is first decomposed into a harmonic and a per-
cussive component. Afterwards, the two components are
processed with different classical TSM algorithms, and fi-
nal output signal is obtained by superimposing the two TSM
results.

To foster research and to obtain a better understanding
of TSM algorithms, we present in this paper the TSM tool-
box. Published under a GNU-GPL license at [8], this self-
contained toolbox serves various purposes. First, it delivers
basic tools to work in the field of TSM. The toolbox in-
cludes well-documented reference implementations of the
most important classical TSM algorithms within a unified
framework. This not only allows users and researchers to
get a better feeling for TSM results by experimenting with
the algorithms, but also gives insights into implementation
details and potential pitfalls. Second, to give an exam-
ple of how those classical algorithms can be combined to
improve TSM results, the toolbox also supplies the code
of a recently proposed TSM approach based on harmonic-
percussive source separation (HPSS), also including the
code of the HPSS procedure itself. Third, the toolbox pro-
vides a MATLAB wrapper function for a commercial, pro-
prietary, and widely used TSM algorithm. Because of its

DAFX-1

http://audiolabs-erlangen.com
mailto:jonathan.driedger@audiolabs-erlangen.de

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

‘state-of-the-art’ character, this is particularly interesting
when conducting listening experiments which are the most
common way of judging the perceptual quality of TSM re-
sults. Finally, the toolbox provides additional code for var-
ious example applications. Such applications include the
automated generation of interfaces for comparing TSM re-
sults, the non-linear synchronization of audio recordings,
and the pitch-shifting of audio signals. Although there al-
ready exist MATLAB implementations of individual TSM
algorithms (for example [9, 10]), we believe that supplying
an entire collection of different TSM approaches along with
example applications within a unifying framework can be
highly beneficial for both researchers as well as educators
in the field of audio processing.

The remainder of this paper is structured as follows. In
Section 2, we briefly review the basics of TSM in general as
well as the TSM algorithms included in the TSM toolbox.
Then, in Section 3, we describe the MATLAB functions
contained in the toolbox. Some of the demo applications
included in the toolbox are discussed in Section 4. Finally,
in Section 5, we conclude this paper with some general re-
marks.

2. TIME-SCALE MODIFICATION

Most TSM procedures follow a common basic strategy
which is sketched in Figure 1. Given an original audio sig-
nal x as an input, the first step of most TSM algorithms
is to split up the waveform into short overlapping analysis
frames which are spaced apart by an analysis hopsize Ha.
In a second step, these frames are relocated on the time-
axis to have a synthesis hopsizeHs and furthermore suitably
adapted. While the relocation accounts for the actual mod-
ification of the time-scale of the audio signal, the objective
of the adaption is to reduce possible artifacts introduced by
the frame relocation. The modified frames, also known as
synthesis frames, are then superimposed to form the output
of the algorithm. The output signal is a time-scale modified
version of the input signal x, altered in length by a constant
stretching factor of α = Hs/Ha.

The main differences between most procedures are
therefore the strategies of how the analysis frames are cho-
sen and how they are modified to form the synthesis frames.
In the following, we review some of these strategies.

2.1. Overlap-Add (OLA)

One of the most basic TSM algorithms is known as
Overlap-Add (OLA). In OLA, the synthesis frames are
computed by just windowing the analysis frames with a
window function w and not processing them any further.
Although OLA is very efficient, adding up the unmodi-
fied synthesis frames usually introduces phase discontinu-

Figure 2: The principle of OLA TSM. (a): Input signal x
(solid line). The analysis frames are indicated by the win-
dow functions (dotted lines). (b): One synthesis frame. (c):
Output signal as sum of all synthesis frames.

ities into the output signal. Periodic, and therefore har-
monic structures in the input signal are not preserved (see
Figure 2). Perceptually, this manifests itself as strong har-
monic artifacts in the output signal. However, especially
when choosing the length of the analysis frames to be very
short, OLA is particularly successful in preserving percus-
sive sounds. This can be seen for example in Figure 3. Note
that the sharp peak-like onsets which are visible in the orig-
inal waveform (see Figure 3a) are preserved well by OLA
(see Figure 3b).

2.2. Waveform Similarity Overlap-Add (WSOLA)

One way of avoiding phase discontinuities as introduced
by OLA is to choose the analysis frames such that suc-
cessive synthesis frames better fit together when adding
them up. The Waveform Similarity Overlap-Add algo-
rithm (WSOLA) [4] achieves this by introducing an anal-
ysis frame position tolerance ∆max. The position of each
analysis frame in the input signal may be shifted on the
time-axis by some ∆∈[−∆max:∆max] such that the wave-
forms of two overlapping synthesis frames are as similar as
possible in the overlapping regions. Afterwards, the frames
are windowed as in OLA and added up to form the out-
put signal. Note that WSOLA reduces to OLA when us-
ing ∆max = 0. The introduced tolerance for the analysis
frames strongly reduces artifacts resulting from phase dis-
continuities. However, especially at transients in the input
signal, the algorithm introduces noticeable stuttering arti-
facts in the output signal. These artifacts originate from
shifted frame positions which tend to cluster around tran-
sients in the input signal. In the output signal, the transients

DAFX-2

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 3: TSM results of different algorithms for an audio
recording of a violin and castanets. (a): Original waveform.
(b): OLA. (c): WSOLA. (d): Phase vocoder. (e): Phase
vocoder with identity phase locking. (f): TSM based on
HPSS. (g): TSM based on the commercial élastique algo-
rithm.

are therefore duplicated several times which results in the
stuttering sound. For example, in Figure 3c, the first tran-
sient is repeated three times with different amplitudes.

2.3. Phase Vocoder

While WSOLA approaches the problem of phase discon-
tinuities in the time-domain, the problem can also be tar-
geted in the frequency-domain. The core idea of the phase

vocoder [5, 6] is to see each analysis frame as a weighted
sum of sinusoids with known frequency and phase. The
synthesis frames are then computed by adapting the phases
of these sinusoids such that no phase discontinuities are in-
troduced when adding up the relocated synthesis frames.

In the first step of the procedure the Fourier transform
is applied to every analysis frame resulting in a sequence of
frequency spectra. Each frequency bin of a spectrum repre-
sents a sinusoid that contributes to the original signal. Af-
terwards, the instantaneous frequencies of the spectrum’s
frequency bins are computed from the phase differences of
successive spectra, see [11]. Knowing the instantaneous fre-
quencies and the synthesis hopsize Hs, the phases of the
spectra can be adapted accordingly. Finally, all spectra are
brought back to the time-domain by applying the inverse
Fourier transform with the resulting waveforms constituting
the synthesis frames. Note that the term “phase vocoder”
generally describes the technique to estimate the instanta-
neous frequencies in an audio signal. However, the term is
also frequently used to name the TSM algorithm.

By design, the phase vocoder guarantees phase continu-
ity of all sinusoidals contributing to the output signal, which
is also known as horizontal phase coherence. However, the
vertical phase coherence, meaning the phase relationships
of sinusoidals within one frame, is usually destroyed in the
phase adaption process. Transients, which are highly de-
pendent on preserving the vertical phase coherence of the
signal, are therefore often smeared in phase vocoder TSM
results, see Figure 3d for an example. The loss of vertical
phase coherence also causes a very distinct sound coloration
of phase vocoder TSM results known as phasiness [12].

2.4. Phase Vocoder with Identity Phase Locking

To reduce the loss of vertical phase coherence in the phase
vocoder, Laroche and Dolson proposed a modification to
the standard phase vocoder TSM algorithm [13]. Their core
idea is to not adapt the phases of all frequency bins in the
short-time Fourier spectra independently of each other. In-
stead, bins which contribute to the same partial of the audio
signal are grouped. A peak in the magnitude spectrum is as-
sumed to represent one partial of the audio signal, while the
bins surrounding the peak are assumed to contribute to this
partial as well. In the phase adaption process, only the fre-
quency bins which contain spectral peaks are updated in the
usual phase vocoder fashion. The phases of the remaining
frequency bins are then locked to the phase of the closest
spectral peak and the vertical phase coherence is therefore
locally preserved. This technique, also known as identity
phase locking leads to reduced phasiness artifacts and also
to less transient smearing, see Figure 3e for an example.

DAFX-3

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 4: Overview of TSM based on HPSS. (a): Input au-
dio signal. (b): Separation in harmonic component (left)
and percussive component (right). (c): TSM results for the
harmonic component using the phase vocoder (left) and for
the percussive component using OLA (right). (d): Superpo-
sition of the TSM results from (c).

2.5. Combined TSM based on HPSS

TSM algorithms like the phase vocoder work particularly
well for audio signals with harmonic content, while other
algorithms like OLA are well suited for percussive sig-
nals. The authors of [7] therefore proposed a combined
TSM approach using harmonic-percussive source separa-
tion (HPSS) techniques.

In HPSS, the goal is to decompose a given audio signal
into a signal consisting of all harmonic sound components
and a signal consisting of all percussive sounds. Fitzgerald
[14] proposed a simple and effective HPSS procedure. This
method exploits the fact that in a spectral representation of
a signal, harmonic sounds form structures in time direction,
while percussive sounds yield structures in frequency direc-
tion. By applying a median filter of length `h in time direc-
tion and a median filter of length `p in frequency direction to
the magnitude spectrogram of the input signal, the respec-
tive structures are enhanced. Afterwards, by comparing the
two filtered spectra element wise, each time-frequency in-
stance of the signals spectrum can be assigned to either the
harmonic or the percussive portion of the signal. This yields
in the end the desired components.

After having decomposed the input signal using this
HPSS method, the authors of [7] apply the phase vocoder
with identity phase locking to the harmonic component and
OLA to the percussive component. By treating the two
components separately, both the characteristics of the har-
monic sounds as well as the percussive sounds of the input
signal can be preserved. The superimposed TSM results
of both procedures finally form the output of the algorithm

(see Figure 4). Note that there also exist other approaches
to preserve both characteristics. For example, algorithms
employing transient preservation aim for explicitly identi-
fying the time positions of percussive events in the audio
signal and giving them a special treatment in the TSM pro-
cess [15, 16]. Such a strategy can also easily be integrated
into the MATLAB code provided in the TSM toolbox.

2.6. TSM based on élastique

Besides these publically known TSM algorithms, there also
exists a number of proprietary commercial products. One of
these commercially available TSM algorithms, called élas-
tique, has been developed by zPlane [17]. This algorithm,
which is integrated in a wide range of music software like
Steinberg Cubase1 or Ableton Live2, can be considered the
state-of-the-art in the field of commercial TSM algorithms.
An example of an audio signal stretched with élastique is
shown in Figure 3g. In addition to the usual licensing model
for their algorithm, the developers also offer a web-based
interface called sonicAPI3, which allows users to compute
the TSM results for élastique over the internet. At least for
the time being, this service is free of charge for personal us-
age. A MATLAB wrapper function for this webservice is
included in the TSM toolbox.

3. TOOLBOX

The TSM algorithms as described in Section 2 form the core
of our TSM toolbox, which is freely available at the website
[8] under a GNU-GPL license. Table 1 gives an overview of
the main MATLAB functions along with the most important
parameters. Note that there are many more parameters and
additional functions not discussed in this paper. However,
for all parameters there are default settings such that none
of the parameters need to be specified by the user.

To demonstrate how the TSM algorithms contained in
our toolbox can be applied, we now discuss the code exam-
ple shown in Table 2, which is also contained in the toolbox
as script demoTSMtoolbox.m. Our example starts in lines
1-4 with specifying an audio signal as well as a time-stretch
factor α. Furthermore, the audio signal is loaded from the
hard disk using the MATLAB function wavread and stored
in the variable x while its sampling rate is stored in sr.

The first TSM algorithm which is applied to the loaded
signal is OLA in lines 6-10. Since OLA is a special case of
WSOLA, this is done by calling the wsolaTSM.m function
with a specialized set of parameters. In line 6, the analysis
frame position tolerance ∆max of WSOLA is set to 0, turn-
ing WSOLA into OLA. Afterwards, the synthesis hopsize

1http://www.steinberg.net
2https://www.ableton.com
3http://www.sonicapi.com/

DAFX-4

http://www.steinberg.net
https://www.ableton.com
http://www.sonicapi.com/

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Filename Main parameters Optional parameters Description
wsolaTSM.m x, α synHop=̂Hs, win=̂w, tolerance=̂∆max Application of OLA & WSOLA.
pvTSM.m x, α synHop=̂Hs, win=̂w, phaseLocking Application of the phase vocoder (with or with-

out identity phase locking).
hpTSM.m x, α hpsFilLenHarm=̂`h, hpsFilLenPerc=̂`p,

pvSynHop, pvWin, olaSynHop, olaWin
Application of TSM based on HPSS.

elastiqueTSM.m x, α – MATLAB wrapper for the élastique algorithm.
win.m `, β – Generates a sinβ window function of length `.
stft.m x anaHop, win Short-time Fourier transform of x.
istft.m spec synHop, win Inversion of a short-time Fourier transform,

see [18].
hpSep.m x filLenHarm=̂`h, filLenPerc=̂`p Harmonic-percussive source separation.
pitchShiftViaTSM.m x, n algTSM Pitch-shifting the signal x by n cents.
visualizeWav.m x fsAudio, timeRange Visualization of TSM results.
visualizeSpec.m spec fAxis, tAxis, logComp Visualization of a short-time Fourier transform.
visualizeAP.m anchorpoints fsAudio Visualization of a set of anchorpoints.

Table 1: Overview of the main MATLAB functions contained in the TSM toolbox [8] and the most important parameters.

Hs is set to 128 samples in line 7. In lines 8 and 9, a sinβ-
window of length ` = 256 samples and β = 2 is generated
by calling win.m. The size of the generated window spec-
ifies at the same time the size of the analysis and synthesis
frames. Together with the synthesis hopsize of 128 sam-
ples this means that in the output of the TSM algorithm the
synthesis frames will have a half-overlap of 128 samples.
Finally the actual TSM algorithm is applied to the input sig-
nal x with the stretching factor α and the specified set of
parameters in line 10. The resulting waveform is stored in
the variable yOLA.

Next, in lines 12-16, the WSOLA algorithm is applied.
We first set the analysis frame position tolerance ∆max to
512 in line 12. Since WSOLA works optimally for medium
sized frames which are half-overlapped, we set the synthesis
hopsize Hs to 512 in line 13 and chose a sinβ-window of
length ` = 1024 samples and β = 2 in lines 14 and 15.
Finally, the function wsolaTSM.m is called in line 16.

In lines 18-22 the standard phase vocoder is applied by a
call of pvTSM.m. To this end, we first specify that no phase
locking should be applied (line 18). Being a frequency-
domain TSM algorithm, the phase vocoder is dependent on
a high frequency resolution of the used Fourier transform
and therefore on a large frame size. Furthermore, also a
large overlap of the synthesis frames is beneficial for the
quality of the output signal as well as a sin-window func-
tion. We therefore set the synthesis hopsize Hs to 512 (line
19) and chose a sinβ-window of length ` = 2048 samples
and β = 1 (lines 20 and 21), resulting in a 75% frame
overlap. The actual function call is then executed in line
22. For the application of the phase vocoder with iden-
tity phase locking in lines 24-28, the only difference is the
phaseLocking parameter set to one (line 24).

The TSM algorithm based on HPSS, which is applied in
lines 30-38, is a combination of multiple techniques. First,
we set the length of the median filters `h and `p used in

the HPSS procedure both to 10 (lines 30 and 31). Then,
the synthesis hopsizes and windows, which are used in the
two TSM algorithms OLA and phase vocoder with identity
phase locking, are set separately in lines 32-37. In line 38
the algorithm is then executed by a call of hpTSM.m.

The last TSM algorithm is the MATLAB wrapper for
élastique. Since this function requires a sonicAPI access id
as well as the additional tool curl, the function call in line
44 is commented out by default. However, when supply-
ing the additional sources the algorithm can be applied by a
call to elastiqueTSM.m. Since élastique is a proprietary
procedure it is not possible to tweak the algorithm with ad-
ditional parameters.

In lines 46 and 47, the visualization of the original in-
put signal takes place. First, the segment of the input au-
dio signal to be visualized is set to the section of the wave-
form between second 5.1 and 5.3 (line 46). Afterwards the
visualization function visualizeWav.m is applied to x in
line 47. To visualize the corresponding stretched audio seg-
ment, the segments boundaries are just multiplied with the
stretching factor α in line 48. Afterwards, the visualization
function is called again exemplarily for OLA’s TSM result
in line 49. Finally, in line 50, the TSM result of OLA is
also written to the hard disk using the MATLAB function
wavwrite.

4. APPLICATIONS

In this section, we discuss some additional functionalities of
the TSM toolbox, including some demo applications.

4.1. Interface Generation

The most common way of comparing the quality of differ-
ent TSM algorithms is by performing listening experiments.
To this end, one usually generates time-stretched versions

DAFX-5

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

1 filename = ’CastanetsViolin.wav’;
2 alpha = 1.8;
3
4 [x,sr] = wavread(filename);
5
6 paramOLA.tolerance = 0;
7 paramOLA.synHop = 128;
8 len = 256; beta = 2;
9 paramOLA.win = win(len,beta);

10 yOLA = wsolaTSM(x,alpha,paramOLA);
11
12 paramWSOLA.tolerance = 512;
13 paramWSOLA.synHop = 512;
14 len = 1024; beta = 2;
15 paramWSOLA.win = win(len,beta);
16 yWSOLA = wsolaTSM(x,alpha,paramWSOLA);
17
18 paramPV.phaseLocking = 0;
19 paramPV.synHop = 512;
20 len = 2048; beta = 1;
21 paramPV.win = win(len,beta);
22 yPV = pvTSM(x,alpha,paramPV);
23
24 paramPVpl.phaseLocking = 1;
25 paramPVpl.synHop = 512;
26 len = 2048; beta = 1;
27 paramPVpl.win = win(len,beta);
28 yPVpl = pvTSM(x,alpha,paramPVpl);
29
30 paramHP.hpsFilLenHarm = 10;
31 paramHP.hpsFilLenPerc = 10;
32 paramHP.pvSynHop = 512;
33 len = 2048; beta = 1;
34 paramHP.pvWin = win(len,beta);
35 paramHP.olaSynHop = 128;
36 len = 128; beta = 2;
37 paramHP.olaWin = win(len,beta);
38 yHP = hpTSM(x,alpha,paramHP);
39
40 % To execute elastique, you will need
41 % an access id from http://www.sonicapi.com.
42 % Furthermore, you need to download ’curl’
43 % from http://curl.haxx.se/download.html.
44 % yELAST = elastiqueTSM(x,alpha);
45
46 paramVis.timeRange = [5.1 5.3];
47 visualizeWav(x,paramVis);
48 paramVis.timeRange = [5.1 5.3] * alpha;
49 visualizeWav(yOLA,paramVis);
50 wavwrite(yOLA,sr,’Output_OLA.wav’

Table 2: Code example for computing TSM results of various
TSM algorithms, generating the visualizations, and writing the
TSM results to the hard disk.

of several audio items using different TSM algorithms and
stretching factors. This results in large amounts of audio
data. To be able to compare the generated TSM results,
interfaces which allow a user to order and access the au-
dio signals in a convenient way are of great help. With the
script demoGenerateTSMwebsite.m, which is contained
in the TSM toolbox, we provide the code for generating
such a HTML-based interface automatically (see Figure5).
The toolbox also includes the set of audio items listed in Ta-
ble 3, which has been already used for evaluation purposes
in the context of TSM in [7, 19].

Figure 5: Screenshot of the interface generated using the
function demoGenerateTSMwebsite.m of the TSM tool-
box.

Item name Description
Bongo Regular beat played on bongos.
CastanetsViolin Solo violin overlayed with castanets.
DrumSolo A solo performed on a drum set.
Glockenspiel Monophonic melody played on a glockenspiel.
Jazz Synthetic polyphonic sound mixture of a trumpet, a piano, a

bass and drums.
Pop Synthetic polyphonic sound mixture of several synthesizers,

a guitar and drums.
SingingVoice Solo male singing voice.
Stepdad Excerpt from My Leather, My Fur, My Nails by the band Step-

dad.
SynthMono Monophonic synthesizer with a very noisy and distorted

sound.
SynthPoly Sound mixture of several polyphonic synthesizers.

Table 3: List of audio items included in the TSM toolbox.

4.2. Non-linear Time-Scale Modification

In addition to stretching audio signals in a linear fashion
by a constant stretching factor α, the implementations con-
tained in the TSM toolbox (except for élastique) are also
capable of stretching input signals in a non-linear way. To
this end, one needs to define a time-stretch function which
defines the mapping between time-positions in the input sig-
nal and the output signal of the TSM algorithm. A very con-
venient way of defining such a time-stretch function is by
specifying a set of anchorpoints. An anchorpoint is a pair of
time positions where the first entry specifies a time-position
in the input signal and the second entry a time-position
in the output signal. The actual time-stretch function is
then obtained by a linear interpolation between the anchor-
points. In Figure 6, one can see an example of such a non-
linear modification. In Figure 6b, we see the waveforms
of two recorded performances of the first five measures of
Beethoven’s Symphony No. 5. The corresponding time-
positions of the note onsets are indicated by red arrows. Ob-

DAFX-6

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 6: (a): Score of the first five measures of Beethoven’s
Symphony No. 5. (b): Waveforms of two performances.
Corresponding onset positions are indicated by the red ar-
rows. (c): Set of anchorpoints. (d): Onset-synchronized
waveforms of the two performances, where the second per-
formance was modified.

viously, the two performances differ strongly in their length.
However, the tempo of the two performances does not dif-
fer by some constant factor. In fact, the tempo of the eighth
notes in the first and third measure are played at almost the
same tempo in both performances. Contrary, the durations
of the half notes with fermata in measures two and five differ
strongly in the two recordings. The mapping between the
note onsets of the two performances is therefore non-linear.
We define eight anchorpoints, which map the onset posi-
tions of the second performance to the onset positions of the
first performance (plus two additional anchorpoints, which
align the beginning and the end of the waveforms). Based
on these anchorpoints, we then apply one of the TSM algo-
rithms in the TSM toolbox to the second performance to ob-
tain a version of the recording which is onset-synchronized
with the first performance, see Figure 6d. The MATLAB
code for this example, which also generates sonifications
of the synchronization result, is also contained in the TSM
toolbox in the file demoNonlinearTSM.m. In this example,
the anchorpoints were chosen manually. However, one can
also compute alignments between two recordings automat-
ically and derive anchorpoints from them, see for example
[20]. This functionality can, for example, be used in scenar-
ios like automated soundtrack generation [21] or automated
DJing [1, 2].

Figure 7: Pitch-shifting via resampling and TSM. (a): Spec-
trogram of an input audio signal. (b): Spectrogram of the
resampled signal. (c): Spectrogram after TSM application.

4.3. Pitch-Shifting

Pitch-shifting is the task of changing the pitch of an audio
recording without altering its length. It can therefore be
seen as the dual problem to TSM. While there exist spe-
cialized pitch-shifting algorithms [22, 23], it is also pos-
sible to approach the problem by combining TSM algo-
rithms with resampling. Here, the core observation is, that
stretching or compressing the whole waveform of an au-
dio signal changes the length and the pitch of the signal at
the same time. With vinyl records, this can for example
be simulated by changing the rotation speed of the record
player. In the world of digital audio signals, the same ef-
fect can be achieved by resampling a given signal. To
this end, a given audio signal, sampled at a frequency of
fin, is resampled to have a new sampling frequency fout.
When playing back the resampled signal at the old sam-
pling frequency fin, this changes the pitch of the signal
by log(fin/fout)/log(12

√
2) semitones, as well as its length

by a factor of fout/fin. To demonstrate this, we show an
example in Figure 7. Here, the goal is to apply a pitch-
shift of 8 semitones to the input audio signal. The origi-
nal signal has a sampling frequency of fin=44100 Hz (Fig-
ure 7a). To achieve a pitch-shift of 8 semitones, the sig-
nal is resampled to fout=27781 Hz (Figure 7b). One can
see, that the resampling changed the pitch of the signal as
well as its length. While the change in pitch is desired, the
change in length needs to be compensated. This can be
done using a TSM algorithm at hand (Figure 7c). How-
ever, the quality of the pitch-shifting result crucially de-
pends on the quality of the TSM algorithm. The MATLAB
function pitchShiftViaTSM.m, which employs the above
described strategy for pitch-shifting, is contained in the
TSM toolbox. Furthermore, the script demoPitchShift.m
gives an example of how this function can be applied.

5. CONCLUSIONS

In this paper, we have introduced the TSM toolbox, a unify-
ing MATLAB framework which contains several TSM al-

DAFX-7

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

gorithms, various code examples for demo applications, as
well as audio material that has already been used for evalu-
ating TSM algorithms. We hope that this toolbox not only
provides a solid code basis to work in the field of TSM, but
also helps to raise the awareness for potential problems of
classical TSM algorithms, to foster the development of new
TSM techniques, and to ease the design of listening experi-
ments. Finally, we would like to encourage developers and
researchers in the field of audio processing and music infor-
mation retrieval to use the toolbox to realize their ideas of
applications involving TSM of audio signals.

6. REFERENCES

[1] Dave Cliff, “Hang the DJ: Automatic sequencing and seam-
less mixing of dance-music tracks,” Tech. Rep., HP Labora-
tories Bristol, 2000.

[2] Hiromi Ishizaki, Keiichiro Hoashi, and Yasuhiro Takishima,
“Full-automatic DJ mixing system with optimal tempo ad-
justment based on measurement function of user discomfort,”
in Proceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), Kobe, Japan, 2009,
pp. 135–140.

[3] Alexis Moinet, Thierry Dutoit, and Thierry Dutoit
Alexis Moinet, “Audio time-scaling for slow motion sports
videos,” in Proceedings of the 16th International Confer-
ence on Digital Audio Effects (DAFx), Maynooth, Ireland,
September 2013.

[4] Werner Verhelst and Marc Roelands, “An overlap-add tech-
nique based on waveform similarity (WSOLA) for high qual-
ity time-scale modification of speech,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Minneapolis, USA, 1993.

[5] James L. Flanagan and R. M. Golden, “Phase vocoder,” Bell
System Technical Journal, vol. 45, pp. 1493–1509, 1966.

[6] M. R. Portnoff, “Implementation of the digital phase vocoder
using the fast fourier transform,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 24, no. 3, pp.
243–248, 1976.

[7] Jonathan Driedger, Meinard Müller, and Sebastian Ewert,
“Improving time-scale modification of music signals using
harmonic-percussive separation,” Signal Processing Letters,
IEEE, vol. 21, no. 1, pp. 105–109, 2014.

[8] Jonathan Driedger and Meinard Müller, “TSM tool-
box,” http://www.audiolabs-erlangen.de/
resources/MIR/TSMtoolbox/.

[9] Amalia De Götzen, Nicola Bernardini, and Daniel Arfib,
“Traditional (?) implementations of a phase vocoder: the
tricks of the trade,” in Proceedings of the COST G-6 Con-
ference on Digital Audio Effects (DAFX-00), Verona, Italy,
December 2000.

[10] Daniel P. W. Ellis, “A phase vocoder in Mat-
lab,” http://www.ee.columbia.edu/~dpwe/
resources/matlab/pvoc/, 2002, Web resource, last
consulted in February 2014.

[11] Mark Dolson, “The phase vocoder: a tutorial,” Computer
Musical Journal, vol. 10, no. 4, pp. 14–27, 1986.

[12] Jean Laroche and Mark Dolson, “Phase-vocoder: about this
phasiness business,” in IEEE ASSP Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, 1997, Oc-
tober 1997.

[13] Jean Laroche and Mark Dolson, “Improved phase vocoder
time-scale modification of audio,” IEEE Transactions on
Speech and Audio Processing, vol. 7, no. 3, pp. 323–332,
1999.

[14] Derry Fitzgerald, “Harmonic/percussive separation using
median filtering,” in Proceedings of the International Con-
ference on Digital Audio Effects (DAFx), Graz, Austria,
2010, pp. 246–253.

[15] Frederik Nagel and Andreas Walther, “A novel transient han-
dling scheme for time stretching algorithms,” in 127th Audio
Engineering Society Convention 2009, New York, NY, 2009,
pp. 185–192.

[16] Shahaf Grofit and Yizhar Lavner, “Time-scale modification
of audio signals using enhanced WSOLA with management
of transients,” IEEE Transactions on Audio, Speech & Lan-
guage Processing, vol. 16, no. 1, pp. 106–115, 2008.

[17] zplane development, “élastique time stretching & pitch shift-
ing SDKs,” http://www.zplane.de/index.php?
page=description-elastique, Web resource, last
consulted in August 2013.

[18] Daniel W. Griffin and Jae S. Lim, “Signal estimation from
modified short-time Fourier transform,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 32, no. 2,
pp. 236–243, 1984.

[19] Jonathan Driedger, Meinard Müller, and Sebastian Ew-
ert, “Accompanying website: Improving time-scale mod-
ification of music signals using harmonic-percussive sep-
aration,” http://www.audiolabs-erlangen.de/
resources/2014-SPL-HPTSM/, Web resource, last
consulted in March 2014.

[20] Sebastian Ewert, Meinard Müller, and Peter Grosche, “High
resolution audio synchronization using chroma onset fea-
tures,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP),
Taipei, Taiwan, 2009, pp. 1869–1872.

[21] Meinard Müller and Jonathan Driedger, “Data-driven sound
track generation,” in Multimodal Music Processing, Meinard
Müller, Masataka Goto, and Markus Schedl, Eds., vol. 3
of Dagstuhl Follow-Ups, pp. 175–194. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2012.

[22] Azadeh Haghparast, Henri Penttinen, and Vesa Välimäki,
“Real-time pitch-shifting of musical signals by a time-
varying factor using normalized filtered correlation time-
scale modification,” Bordeaux, France, September 2007, pp.
7–14.

[23] Christian Schörkhuber, Anssi Klapuri, and Alois Sontacchi,
“Audio pitch shifting using the constant-q transform,” Jour-
nal of the Audio Engineering Society, vol. 61, no. 7/8, pp.
562–572, 2013.

DAFX-8

http://www.audiolabs-erlangen.de/resources/MIR/TSMtoolbox/
http://www.audiolabs-erlangen.de/resources/MIR/TSMtoolbox/
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/
http://www.zplane.de/index.php?page=description-elastique
http://www.zplane.de/index.php?page=description-elastique
http://www.audiolabs-erlangen.de/resources/2014-SPL-HPTSM/
http://www.audiolabs-erlangen.de/resources/2014-SPL-HPTSM/

	1 Introduction
	2 Time-Scale Modification
	2.1 Overlap-Add (OLA)
	2.2 Waveform Similarity Overlap-Add (WSOLA)
	2.3 Phase Vocoder
	2.4 Phase Vocoder with Identity Phase Locking
	2.5 Combined TSM based on HPSS
	2.6 TSM based on élastique

	3 Toolbox
	4 Applications
	4.1 Interface Generation
	4.2 Non-linear Time-Scale Modification
	4.3 Pitch-Shifting

	5 Conclusions
	6 References

