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ABSTRACT
In this work we present a new scenario of analyzing and separating
linear mixtures of musical instrument signals. When instruments
are playing in unison, traditional source separation methods are not
performing well. Although the sources share the same pitch, they
often still differ in their modulation frequency caused by vibrato
and/or tremolo effects. In this paper we propose source separation
schemes that exploit AM/FM characteristics to improve the sep-
aration quality of such mixtures. We show a method to process
mixtures based on differences in their amplitude modulation fre-
quency of the sources by using non-negative tensor factorization.
Further, we propose an informed warped time domain approach
for separating mixtures based on variations in the instantaneous
frequencies of the sources.

1. INTRODUCTION

Audio source separation is a very active research field with a large
number of contributions. Applications are dependent on the con-
text of the scenario, ranging from enhancements of speech signals
to musically motivated analysis tasks.

The separation of sound sources from a single channel mixture
is considered as an under-determined case which does not have
a single solution. Knowing the way in which source signals are
mixed together is crucial to the quality of separation systems. In
the context of speech separation even unsupervised methods can
lead to good results. This is due to the fact that mixtures of speech
signals (like in a cocktail party environment) show a high degree
of statistical independence. Mixtures of musical instruments, how-
ever, are highly correlated which is a desired aim of musical per-
formances in general.

The Signal Separation Evaluation Campaign (SiSEC) is a solid
indicator of the progress in research within the field of source sep-
aration [1]. The results from 2013 [2] show that for professionally
produced music it is still difficult to achieve a high quality separa-
tion. One reason is due to the fact that the wide use of non-linear
post-processing techniques (e.g. dynamic compression or effects
like reverb) break assumptions that often are required to enable
good performance of source separation algorithms. Another rea-
son is that non-stationary effects like vibrato introduce additional
problems [3].

In most scenarios for source separation of instrument signals it
is common to assume that the spectral harmonics do only partially
overlap. This enables algorithms like non-negative matrix factor-
ization (NMF) to approximate the mixture from a lower-rank de-
composition in an unsupervised way. Such systems are described
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in [4] and [5]. Additionally the popularity of the class of NMF al-
gorithms can be explained by the intuitive way in which they work
on time-frequency representations of the mixture signal.

In the context of musical instrument source separation, many
researchers have focused on including prior information about the
sources in their algorithms [6]. The availability and detail of such
a-priori information varies. Often systems learn spectral as well as
temporal cues from training data or parts of the mixture where only
one instrument is active. One example of such informed source
separation systems is described by Ewert and Müller [7]. It incor-
porates the pitch and onset information encoded in a MIDI file to
improve the separation result.

Even the number of sources is a simple but very important
information for source separation algorithms. One of the main
drawbacks of many source separation systems is that they rely on
this information. In some scenarios, like popular western music,
the sources to separate are grouped into Melody + Bass + Drums
and a residual signal. Constraining the system to such a scenario
allows the results to be evaluated even if the set of sources being
separated is incomplete. Constrained systems like these are also
sufficient for real-world applications such as the eminent karaoke
scenario. Limiting the number of desired sources helps not only to
improve the performance of the algorithms but is also related to the
fact that the number of sources humans can perceive is limited, too.
Although a threshold has not been systematically addressed so far,
a variety of experiments have been carried out. David Huron found
[8] that the number of voices humans can correctly identify is up to
three. When Stöter and Schoeffler et. al. [9, 10] asked participants
to identify the number of instruments in a piece of music, the par-
ticipants were only able to identify up to three, similar to Huron’s
voice experiments. There is very little chance that listeners are
able to detect the presence of more than three sources. However in
trials with fewer than three instruments, listeners tended to be very
sensitive: One of the stimuli in the [9, 10] experiments with 1168
participants consisted of a mixture of Violin and Flute played in
unison. The results showed that 76% of the participants correctly
identified two instruments. Only 18% of the participants underes-
timated by one instrument, 6% overestimated by one instrument.

Since humans are able to reliably detect even instruments played
in unison, this is a good motivation to expect the same from an al-
gorithm. In this paper we want to address this scenario which has
not been brought up so far. We believe creating and evaluating new
algorithms for separating sources playing in unison will improve
source separation systems in general.

The remainder of this paper is organized as follows: Section 2
describes the challenges of a unison source separation scenario.
We propose techniques based on the modulation characteristics of
the signal to address the separation scenario in Section 3 and Sec-
tion 4. In Section 5 we introduce a data set for the unison scenario.
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Further we present and discuss the results from our study and a
comparison between the algorithms in Section 5.3. Conclusions
are then presented in Section 6.

2. UNISON SOURCE SEPARATION SCENARIO

Up to date there are very few proposed source separation methods
which perform good on a variety of input signals without making
general assumptions or constraints. Most of the current state-of-
the-art algorithms address specific scenarios like voice or melody
extraction, or harmonic percussive separation. Additionally as-
sumptions about the mixture itself are important, too. In this paper
we consider the linear single channel case:

x(n) =

N∑
s=1

xs(n). (1)

Describing a source separation scenario includes the number of
sourcesN and the number of desired sourcesD which is normally
smaller thanN when the desired sources contain groups of sources
like instrument classes (strings, woodwinds, etc.).

We propose a scenario where instruments play in unison. This
means that they share the same fundamental frequency (regardless
of the octave) so that the sources can overlap both in time and
frequency. In fact unison1 mixtures are meant to be as much over-
lapped as possible, hence they are very difficult to separate. How-
ever, due to masking effects, a relatively good subjective quality
for the separated sources can be obtained, even if the other sources
are not perfectly suppressed. As far as we know, there is no contri-
bution to the source separation scene that focuses on mixtures of
such unison sources.

The decomposition of sources with overlapping partials are
covered in several other publications like [3] and [11] which are
based on non-negative matrix factorization. Lin et. al. [12] address
the problem by defining invariant timbre based features. We pro-
pose to address the problem from a different perspective and focus
on analyzing the non-stationarities of the source signals. For most
musical instruments, the non-stationary features are intentionally
created, for instance with vibrato or tremolo effects, which make
them valuable to track. These non-stationarities can be modeled or
learned from the signals themselves.

In this work we assume that we can separate overlapping par-
tials of the sources based on differences in amplitude and/or fre-
quency modulation, resulting in the following model for a signal
with P commonly modulated partials

x(n) =

P∑
p=1

[(
1 + a(n)

)
· sin

(
2πfp,0

(
n+

1

f1,0

n∑
m=m0

f(m)
)
+ φp,0

)]
,

(2)

where effectively the amplitude modulation is a(n) and the fre-
quency modulation of the first partial is f(n).
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Figure 1: Example of separating a mixture of two amplitude mod-
ulated signals by NMF and Modulation-NTF.
(a) Mixture of two sinusoids at 440 Hz with AM of 4.7 Hz and
12.6 Hz (fs=8 kHz), (b) STFT (FFT length = 256), (c) Slice of
Modulation Tensor (FFT length = 256), (d) W×H Result of Non-
Negative Matrix Factorization (β = 1) after 100 iterations, (e)
G×A×S Result of Non-Negative Tensor Factorization (β = 1)
after 100 iterations,
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3. SEPARATING BY AMPLITUDE MODULATION

Amplitude modulation is normally not present, isolated in acousti-
cal instruments. However electric pianos like Rhodes or Wurlitzers
can generate a tremolo effect. Using the amplitude modulation to
separate mixtures has already been done in [13] which makes use
of the concept of Common Amplitude Modulation.

CAM is effectively the property of harmonics that share the
same amplitude modulation across the bins. One way of analyz-
ing it is a modulation spectrogram which is a frequency-frequency
representation of a time domain input signal. There are also other
ways to generate a modulation spectrum. A complete signal rep-
resentation can be archived by a modulation tensor which holds
the modulation spectrograms for each time frame. Barker and Vir-
tanen [14] found a way to utilize the modulation tensor for single
channel source separation. Standard NMF models the spectrogram
by the sum of K components which are each factored into fre-
quency/basis and time/activations components:

Xn,m ≈
K∑

k=1

Wn,k ×Hk,m. (3)

Non-negative Tensor factorization approximates a modulation ten-
sor by a product of three matrices containing the frequency/basis,
time/activation signals, and the modulation gain for each compo-
nent. Compared to [14] we choose to generate the modulation
tensor in way that is simpler and easier to invert. Barker and Vir-
tanen use a Gammatone filter bank and rectification to model the
characteristics of the human auditory system. We used a two-stage
DFT filter bank where the modulation domain is based on magni-
tude spectrograms. Although this can give perceptually less opti-
mal results, each step can be directly inverted by using the com-
plex representation. Barker already showed that the NTF based
approach gives better results on speech signals. We found that this
approach can be used to separate two instrument mixtures by their
amplitude modulation characteristics and is therefore ideal for the
unison scenario.

In Figure 1 we show the factorization of a simple amplitude
modulated input signal for comparison. The signal consists of two
sinusoids which are linearly mixed. Both share the same carrier
frequency but have different amplitude modulation frequencies.
We choose a factorization into K = 2 components. From the
activation components one can see that NMF is not able to sepa-
rate the two signals sufficiently. NTF gives a smoother activation
matrix and is able to generate the output with the separated am-
plitude modulations on each sinusoid. The modulation frequency
gain matrix shows the two modulation frequency templates and the
DC-component.

4. SEPARATING BY FREQUENCY MODULATION

Frequency modulation caused by vibrato is a very common
playing style for string instruments but also for woodwind and
brass instruments. Vibrato is an effect that is well studied espe-
cially in musicology. Performers tend to perform a vibrato in the
same way when repeating a performance. This can be exploited in
source separation scenarios. Typically, vibratos have modulation
frequencies (rates) which vary between 4 and 8 Hz. Additionally
vibrato rates vary across different instruments. In [15] the vibrato
width (frequency deviation) was found to be significantly different
between violinists and violists performers.

As with the amplitude modulated case NMF lacks the abil-
ity to model time varying frequencies since the W matrix is sta-
tionary. Several extensions for NMF have been proposed to im-
prove the decomposition quality. [16] proposes frequency depen-
dent activations matrices, [11] has developed a system which can
be described as shift invariant NMF. Another approach is to model
the spectral pattern changes by Markov chains [3]. All these ap-
proaches attempt to model the non-stationary effects within the
decomposition model. In this paper we propose a method that in-
creases the stationarity of the signal in preprocessing step and then
use the standard NMF for the decomposition.

We make use of time-warping which refers to a mapping of
the linear time scale t to a warped time scale τ via a mapping
function τ = w(t). To ensure a unique mapping, the mapping
function needs to be strictly increasing. For the discrete time case
the mapping can be achieved by a time-varying re-sampling of
the linear (i.e. regularly sampled) time signal under considera-
tion. The instantaneous sampling frequency then corresponds to
the first derivative of the mapping function. Although the mapping
can be done from any time-span I on the linear time scale to any
time span J on the warped time scale, in the discrete time case it
is advantageous to have the same number of samples in the linear
and warped time domain. This ensures that the average sampling
frequency is the same in both domains. Such time-warping ap-
proaches have already been proposed for different purposes such
as transform-based audio coding [17]. As in these applications,
we derive the mapping function from the varying instantaneous
fundamental frequency in such a manner that the variation of the
frequency is reduced or removed. To be more precise the actual
information needed is not the absolute instantaneous fundamental
frequency but only its change over time. The discrete time warp
map w[n] is then simply the scaled sum of the relative frequencies
f [n]:

w[n] = N

∑n
l=0 f [l]∑N
k=0 f [k]

0 ≤ n < N, (4)

where N being the number of samples of the signal under consid-
eration. From the requirements for the mapping function it follows
that the relative frequency f [n] has to be positive at all instants and
preferably should not exhibit large jumps. For the mapping from
linear to warped time now the linear domain sample points s[ν] for
the regularly spaced samples x[ν] in the warped domain are found
by inverting w[n]. These sample points are then used to re-sample
the linear time domain samples x[n] to the warped time domain
samples x[ν], in our case by employing an 128 times oversampled
FIR low-pass filter. This processing leads to a sampling rate con-
tour which is proportional to the pitch contour. Or in other words,
a fixed number of samples are obtained in each period of the sig-
nal with the varying fundamental frequency. Mutatis mutandis the
sample points s[ν] can be used for the re-sampling from warped
time domain to linear time domain.

In this paper the time-warping was done globally over the full
lengths of the signals under consideration. The globally time-
warped sample sequence was then used in the further processing
steps. In Figure 2 we show the results of the warping process in
the time domain.

A similar approach using frequency modulation to separate a
harmonic source from a mixture was proposed in [18]. Here the
individual lines are demodulated to the base band using a com-
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Figure 2: Example of applying warping to an input signal by using
a frequency variation contour.

bined frequency tracking/demodulation approach. The difference
to our approach is that first the absolute instantaneous frequency
for every harmonic line has to be known instead of a relative fre-
quency that is common to all harmonic lines of a single source.
This relative frequency might be obtained easier than its absolute
value for a mixed signal. Secondly every harmonic line has to be
individually frequency demodulated while in our approach the full
signal is frequency demodulated in one algorithmic step.

4.1. Pitch Variation Informed Source Separation

With the ability to remove the frequency modulation from a signal
we can then include this system in a source separation system to
address the non-stationarity issues of NMF based approaches. Fig-
ure 4 shows how this system works on a harmonic FM signal mix-
ture. Plots (a) and (b) show the two input signals which are linearly
mixed (c). For each source the warp contour needs to be calcu-
lated. The mixture is then warped with pitch variation estimates of
source 1 (d) and source 2 (e). The actual separation/filtering of the
sources is then done by using NMF which is not shown here. To
separate the components from the warped mixture we used NMF
on a spectrogram computed with a very long DFT (about 0.5 s).
NMF can work unsupervised by detecting the more tonal W com-
ponent by using a spectral flatness measure. The separated signals
(f) and (g) then need to be warped back into the original time do-
main resulting in (h) and (i).

It is important to clarify that this approach would not be able
to separate two modulating instruments playing in unison without
having prior knowledge about the individual modulation functions.
Although a pitch variation estimate might be difficult to achieve in
a mixture our approach shows that such a system can make sense.

5. EXPERIMENTS

We wanted to evaluate the methods proposed in Sections 3 and
4 so that they show the fundamental differences in their separa-
tion quality. Like in [14] we choose not to address the problem of
clustering the components after the matrix factorization operation.
Instead of processing mixtures in a A−B−AB or A−AB−B
paradigm we went for a supervised learning phase where we had
access to the original source individually. In this oracle super-
vised approach for each of the sources we then learned the spectral,
temporal (for NMF), and modulation gain components (for MOD-
NTF) and concatenated them. The learned coefficients were then
used to initialize the final factorization process. This way we can
achieve the maximum possible quality.

Instrument Vibrato General MIDI #
Violin yes 40
Viola yes 41
Violon Cello yes 42
Trumpet no 56
Trombone no 57
Horn no 60
Bariton Sax yes 67
Oboe no 68
Clarinet no 71
Flute yes 73

Table 1: Instrument item test set

5.1. Test set

To build a test set we selected 10 instrumental items noted in Ta-
ble 1. The items have each been generated by rendering C4 notes
in a state of the art software sampler. All test have a duration of
about three seconds. Items were equalized in loudness by using an
iterative calculation of the loudness algorithm of the time varying
Zwicker model. The implementation [19] was used. The 10 instru-
ment items then generated 45 unique mixtures of two instruments
each. The processing was done in 44.1 kHz / 16 bit.

5.2. Algorithms

The test set was processed by three algorithms: standard NMF,
pitch variation informed NMF (PVI-NMF) (Section 4.1) and the
non-negative tensor factorization based on modulation spectra (MOD-
NTF) as described in Section 3). All factorizations for NMF and
NTF were computed by minimizing the β = 1 divergence (Kullback-
Leibler divergence). The Pitch Variation Informed-NMF (PVI-
NMF) has been set up in the same way as the other algorithms.
We choose to calculate results with K = 2 and K = 4. The
pitch variation estimator is based on a method that was proposed
by Bäckström in 2009 [20] with a subsequent post-processing to
ensure the smoothness of the mapping.

Each of the algorithms did perform on the same filter bank
and with the same sample rate. NMF approach did use a 2048
STFT with 512 samples hop size. For the MOD-NTF a second
STFT based filter bank was used with 256 sample DFT size and
64 sample hop size. All methods use soft masking / wiener filtering
for the actual synthesis.

5.3. Results

The results were evaluated by using commonly used evaluation
measures provided by the PEASS Toolbox [21]. The evaluation
measure are:

• Overall Perceptual Score (OPS)

• Target-related Perceptual Score (TPS)

• Interference-related Perceptual Score (IPS)

• Artifacts-related Perceptual Score (APS)

• Signal to Distortion Ratio (SDRi)

• Source to Interference Ratio (SIRi)
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• Sources to Artifacts Ratio (SARi) 2

The mean values of the PEASS evaluation are provided in Ta-
ble 2. It can be seen that the SDR values give a different ten-
dency than the OPS score, showing that the differences between
both measures are substantial. Since unison mixtures are even
very challening for humans to segregate we chose to focus on the
psycho-acoustically weighted performance measures only. The re-
sults show a slightly better overall performance for the PVI-NMF.
A more fine grained overview from the OPS results experiment is
presented in Figure 3. It can be seen that results vary a lot be-
tween the mixtures. The modulation tensor factorization (MOD-
NTF) performs good on mixtures like Clarinet-Viola (71-41) or
Clarinet-Cello (71-42) where one source has vibrato and the other
does not (see plots (e,f)). Although it performs well on average,
MOD-NTF shows a high variance in the OPS results. The results
have also been evaluated and confirmed subjectively by informal
listening. Additionally we provide selected stimuli online on an
acompanying webpage 3. In general the PEASS scores give a good
indication of quality. However the artifacts that are introduced by
the standard NMF synthesis seem to be not well reflected. One
possible reason is that PEASS toolbox has not been tested on arti-
facts from unison mixtures.
Future work could include a robust multi pitch variation estima-
tor for musical instruments. Salamon and Gomez [22] describe
the current state of the art of f0 estimation. Some approaches
use source separation to estimate multiple f0 pitch tracks. There-
fore our approach shows that a robust multi pitch f0 estimate can
also help to improve source separation. In the future an iterative
multi-step procedure could lead to better results in both problem
domains.

6. CONCLUSIONS

This paper proposes a new source separation scenario for instru-
ments played in unison. It highlights the time-varying aspects of
the signal sources like amplitude or frequency modulations. By ad-
dressing these aspects, the separation quality for non-unison mix-
tures can generally be improved, too. Furthermore we present two
methods to decompose those mixtures based on differences in the
amplitude or frequency modulation of the sources. One is using a
method already published based on a modulation tensor factoriza-
tion. The other is a novel method that uses an estimate of the pitch
variation of the two input sources to warp the mixture. Within the
warped domain the frequency modulation of the desired source is
removed so that the sources can be separated more easily from the
mixture. The results of 45 mixtures have been evaluated by us-
ing the PEASS toolbox. The scores indicate an improvement of
about 2 OPS points in favor of the pitch variation informed NMF
compared to the standard NMF.

2The i indicates that these scores have been calculated by decomposi-
tion with PEASS [21] instead of BSS EVAL.

3http://www.audiolabs-erlangen.de/resources/
2014-DAFx-Unison/

Algorithm NMF PVI-NMF MOD-NTF
OPS 15.76 17.64 17.35
TPS 30.17 32.80 34.03
IPS 26.07 27.03 22.73

APS 46.14 54.74 46.06
SDRi 2.96 2.54 2.20
SIRi 2.31 1.80 3.13

SARi 22.87 23.35 26.09

Table 2: Results from Evaluation with PEASS 2.0 Toolbox [21].
Best performing algorithm is marked bold.

(a) NMF K = 2 (b) NMF K = 4

(c) PVI-NMF K = 2 (d) PVI-NMF K = 4

(e) MOD-NTF K = 2 (f) MOD-NTF K = 4

Figure 3: Results of Overall Perceptual Score. Each matrix rep-
resents the mean OPS values for each individual mixture of two
sources. The x and y axis represent the instrument IDs in General
MIDI notation (See Table 1).
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(a) Source 1 (b) Source 2

(c) Mixture

(d) Mix. warped by Pitch 1 (e) Mix. warped by Pitch 2

(f) Target 1 warped (g) Target 2 warped

(h) Target 1 unwarped (i) Target 2 unwarped

Figure 4: Example of pitch variation informed NMF in the warped
domain. Time is shown on horizontal axes. Frequency is shown on
vertical axes.
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