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ABSTRACT

In this paper we present a novel algorithm for automatic
analysis, transcription, and parameter extraction from isolated
polyphonic guitar recordings. In addition to general score-related
information such as note onset, duration, and pitch, instrument-
specific information such as the plucked string, the applied pluck-
ing and expression styles are retrieved automatically. For this pur-
pose, we adapted several state-of-the-art approaches for onset and
offset detection, multipitch estimation, string estimation, feature
extraction, and multi-class classification. Furthermore we inves-
tigated a robust partial tracking algorithm with respect to inhar-
monicity, an extensive extraction of novel and known audio fea-
tures as well as the exploitation of instrument-based knowledge
in the form of plausability filtering to obtain more reliable pre-
diction. Our system achieved very high accuracy values of 98 %
for onset and offset detection as well as multipitch estimation.
For the instrument-related parameters, the proposed algorithm also
showed very good performance with accuracy values of 82 % for
the string number, 93 % for the plucking style, and 83 % for the
expression style.

Index Terms - playing techniques, plucking style, expression
style, multiple fundamental frequency estimation, string classifi-
cation, fretboard position, fingering, electric guitar, inharmonicity
coefficient, tablature

1. INTRODUCTION

Audio recordings of plucked string instruments can be described
as a sequence of acoustic note events having a characteristic har-
monic structure, which strongly depends on the type of instrument
and the playing techniques are being used. Scores and tablatures
are common notation formats to store the most important parame-
ters to describe each played note. In order to automatically gener-
ate such notations from a recorded audio signal, these parameters
must be estimated beforehand.

As will be detailed in Section 3, various publications in the
field of Music Information Retrieval (MIR) focused on the auto-
matic extraction of either score-related parameters such as onset,
offset, and pitch (a tasks that is commonly referred to as automatic

∗ All correspondance should be adressed to this author.

music transcription), or instrument-related parameters such as the
applied playing techniques and fretboard positions on string in-
struments. This work expands these approaches by fusing single
parameter estimation algorithms to an overall transcription frame-
work, which is tailored towards instrument-specific properties of
the electric guitar.

The proposed automatic transcription algorithm extracts es-
sential information about the recorded music piece that allows com-
parison with a ground truth notation. Hence possible application
scenarios are music education software such as Songs2See1 and
BandFuse2 as well as music games such as RockSmith3. Fur-
thermore, the transcription algorithm can be applied for a detailed
expressive performance analysis that provides information about
artist-specific peculiarities related to micro-timing or to the pre-
ferred playing techniques. In combination with a sound synthesis
algorithm, an efficient parametric audio coding model with very
low bit rates can be realized due to the very compact symbolic
representation of the instrument recording.

The paper is structured as follows. First, Section 2 provides
important basics of the guitar sound generation. After a review of
the related work in Section 3, we explain the proposed transcrip-
tion algorithm in detail in Section 4. Finally, Section 5 describes
all evaluation experiments and Section 6 summarizes this work.

2. GUITAR SPECIFIC BACKGROUND

The most influential parts of an electric guitar are the strings, the
magnetic pick-up, and the passive electrical tone control. Body
resonances only have a minor influence on the resulting tone and
will not be taken into account here. The guitar strings determine
the basic sound since when vibrating, they are the primary sound
source. The sound is mainly affected by the string material, ten-
sion, and stiffness. These features manifest primarily in frequency
shifts of partial vibrations also known as the effect of inharmonic-
ity [1]. The standard arrangement and tuning of a 6-string gui-
tar with corresponding fundamental frequencies and MIDI num-
ber specifications is given in Table 1. Electromagnetic pick-ups

1http://www.songs2see.com/
2http://bandfuse.com/
3http://rocksmith.ubi.com/
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capture the existing vibrations depending on their position on the
instrument neck and the corresponding possible displacement of
partials. Their technical specifications determine the transfer func-
tion which is commonly approximated by a second order low pass
filter with a cut-off frequency in the range from 2 to 5 kHz. The
same applies to the subsequent tone control of the guitar, which
can be represented by a first order low pass filter. Both can be
combined to an overall transfer function.

Table 1: Standard Tuning of Guitar Strings.

String Standard Fundamental MIDI
Number Tuning Frequency Number

1 E2 82.4 Hz 40
2 A2 110.0 Hz 45
3 D3 146.8 Hz 50
4 G3 196.0 Hz 55
5 B3 246.9 Hz 59
6 E4 329.6 Hz 64

Another important means of tone manipulation is the playing
technique applied by the musician. In this work we distinguish
3 different plucking styles—finger style, picked, and muted—as
well as and 5 expression styles—bending, slide, vibrato, harmon-
ics, and dead notes—executed with the fingering hand in addition
to non-decorated, normal expression style 2. See [2] for a detailed
description of the playing techniques.

Table 2: Playing Techniques.

Plucking Style Expression Style
finger style (F) bending (BE)

picked (P) slide (SL)
muted (M) vibrato (VI)

harmonics (HA)
dead notes (DN)

Besides common music notation, a widespread method of no-
tating guitar music is the tablature. By indicating the fret and string
numbers to be used, it provides an alternative and more intuitive
view of the played score. Figure 1 shows an example of a score
and corresponding tablature.

Figure 1: Excerpt of the score and tablature representation of an
interpretation from the Song Layla written by Eric Clapton [3].

In tablature notation every drawn line symbolizes a string of
the instrument, typically the lowest string corresponds to the bot-
tom line. The numbers written on the single lines represent the
used fret, where the fret number 0 corresponds to the open string.

3. PREVIOUS WORK

As will be discussed in Section 4, various Music Information Re-
trieval (MIR) tasks are relevant for our work. In the past, several
authors focussed on monophonic guitar recordings, which contain
isolated notes or simple melodies. The task of onset detection,
i.e. the detection of note start times in audio recordings, was in-
vestigated in many publications. An overview over state-of-the-art
methods can be found for instance in [4]. Multipitch estimation,
i.e., the transcription of multiple simultaneously sounding notes,
is up to this day a very challenging task to be performed in an au-
tomated manner [5]. In our paper, we build upon the method pro-
posed by Fuentes et al. in [6]. For time-frequency-representation
we use a spectral magnitude reassignment based on the instanta-
neous frequency as proposed in [7]. Fiss and Kwasinski proposed
a multipitch estimation algorithm tailored towards the guitar in [8]
by exploiting knowledge about the string tuning and pitch range
of the instrument. Similarly, Yazawa et al. combine multipitch
estimation with three constraints related to the guitar fretboard ge-
ometry to improve the transcription results [9]. In [3], an algorithm
capable of real-time guitar string detection is presented, which is
also the base for our work. Particularly for guitar chords, Barban-
cho et al. automatically classified between 330 different finger-
ing configuration for three-voiced and four-voiced guitar chords
by combining a multipitch estimation algorithm and a statistical
modeling using a Hidden Markov Model (HMM) [10].

In addition to the score-based parametrization and the estima-
tion of the fretboard position, we aim to estimate the playing tech-
nique that was used on the guitar to play each note. We showed
in previous work, that the estimation of playing techniques [2] for
electric bass guitar, which shares similar playing techniques with
the electric guitar, can be performed from isolated note record-
ings with a high accuracy using a combination of audio features
and machine learning techniques. Various publications analyzed
guitar recordings with focus on playing techniques that modulate
the fundamental frequency such as vibrato [11], bending [12], or
slides [13, 12]. Other guitar playing techniques that were inves-
tigated in the literature are slide, hammer-on, and pull-off [13,
12]. A broader overview over state-of-the-art methods for the tran-
scription and instrument-related parameters from string instrument
recordings can be found in [14] and [15].

4. PROPOSED METHOD

4.1. Problem Formulation

The goal of this work is to develop an analysis algorithm, that ex-
tracts all essential parameters necessary for the automatic creation
of guitar scores. Therefore, a robust event separation based on
onset detection methods has to be implemented. Afterwards, the
note duration and pitch must be extracted. In the next step, both the
plucking and expression styles (see Table 2) as well as the string
number must be estimated using feature extraction and subsequent
classification methods. Finally, by using knowledge about the in-
strument string tuning, the fret position can be derived for each
note.

The transcription parameters can be verified and corrected by
exploiting knowledge about the instrument construction and phys-
ical limitations of the guitar player. Hence, a further goal is to
develop adaptive algorithms that satisfy these conditions. The fi-
nal model should be able to store the extracted parameters and
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to generate a guitar tablature and score completely automatically
based on a given polyphonic, monotimbral electric guitar record-
ing. In this work exclusively clean guitar signals without any prior
audio effect processing are considered. According to the diagram
in Figure 2, the following sections will describe each step in detail.

4.2. Onset Detection

The purpose of this onset detection stage is the segmentation into
musical note events. For the case of electric guitar recordings on-
sets corresponds to single plucks. The signal part between two
plucks is interpreted as a note event. First, seven state-of-the-art
onset detection functions (see appendix 8.1) were tested against
a separate development set of guitar note recordings (see Sec-
tion 5.1) using the same default blocksize and hopsize values. In
general, these functions give an estimate of likelihood of a note
onset to appear at each given time frame. Based on their supe-
rior performance, we selected the three best functions Spectral
Flux, Pitchogram Novelty, and Rectified Complex Domain for the
framework. Since all detection functions work in the frequency
domain, we determined the optimal framesize for each function.

For the extraction of the onset positions, a peak picking al-
gorithm proposed by Dixon [4] was used, which was optimized
separately for each method. The results of each onset detection
compared to the manually annotated ground truth are shown in Ta-
ble 3. All detections are considered as true positives within an
absolute tolerance area of 50 ms.

Table 3: Optimal framesize and achieved F-measure for the best
performing onset detection functions.

Onset Detection Function Optimal framesize F-Measure
Spectral Flux 8 ms 0.93

Pitchogram Novelty 5 ms 0.87
Rectified Complex Domain 5 ms 0.95

The obtained onset positions of all detection functions are com-
bined and filtered with an additional peak picking to avoid the de-
tection of crackles, offsets, or duplicates that represent the same
note onsets caused by this combination. Therefore, the mean square
of energies Ē(n) in a variable interval τ before and after each on-
set candidate are analyzed and set into relation as

Ē(n) =

∑τ
i=−τ f(n+ i)2

τ
, (1)

with f(n) corresponding to the nth frame of the summarized onset
function f . With Ēi denoting the mean squared energy of the ith

interval ahead of the current onset, L corresponding to the length
of the signal, fs corresponding to the sampling frequency, and kF
and kT being adjustment variables, the general conditions defining
a detection as a valid onset are the following:

min[Ēi(n− 2τi)]i=1,2,3..I < Ē(n+ τ), (2)∑L
i=1 f(i)2

L
< kE · Ē(n+ τ) (3)

and
n− nos(n−1) > kT · fs. (4)

I is the maximum of intervals taken into account before the onset
candidate, n is the sample index, and nos is the sample number of
the observed onset candidate.

In this work, the best results were achieved with kE = 100,
kT = 0.12 ms, and τ = 331 corresponding to 1.5 frames of 5
ms hopsize with a sample rate of 44100 Hz. The final method
achieved an F-measure for onset detection of 98.5 %—all results
are summarized in Section 5.3.

4.3. Multipitch Estimation

Next, the note segments of the audio signal are examined with re-
spect to their spectral energy distribution. Large frame-sizes of
N = 4096 and higher are necessary for the conventional Short-
time Fourier Transform (STFT) to get a sufficient frequency res-
olution, which offers enough information for the pitch discrimi-
nation in the fundamental frequency register of the spectrum of a
guitar. At the same time, large frame-sizes significantly reduce the
achievable time resolution, which especially affects short notes.
To avoid such complications, we compute a reassigned magnitude
spectrogram based on the Instantaneous Frequency (IF) [7] repre-
sentation in addition to the conventional time-frequency transform.
By using the phase information for frequency correction, the IF
supplies a high spectral accuracy while working with shorter frame
sizes (here: N = 1024).

We use the IF magnitude spectrogram with a logarithmically-
spaced frequency axis (84 bins per octave) as input for the sub-
sequent Blind Harmonic Adaptive Decomposition (BHAD) algo-
rithm proposed by Fuentes in [6]. It uses a frame overlap of 75 %
and a downsampling by factor 4. The BHAD represents a multip-
itch estimation based on a framewise approach as previously used
by Männchen et al. [3]. Several start frames (default: 5 frames)
of each note event are left out to avoid the influence of noisy at-
tack part transients. Furthermore, we aggregate over the following
five frames in order to achieve more robust results. This way, note
events with a minimum duration of 65 ms can be evaluated. For
shorter events the amount of frames used for aggregation is re-
duced proportional.

We achieved an F-measure of 0.96 for pitch detection using
this parameter setting. For the optimization of the algorithm con-
cerning the number of aggregated frames and the parameters of
the BHAD algorithm, we aimed at maximizing the Recall value
(here: 0.98) in order to detect all possible fundamental frequency
candidates. False positives are less critical since they can be elim-
inated by subsequent energy checks and checks of multiple pitch
occurrences.

4.4. Partial Tracking

Based on the results of the pitch estimation, the fundamental fre-
quency and the first 15 partials of each note event are tracked over
time as follows. First, we apply a simple peak picking to the mag-
nitude spectrum of each frame. The spectral peaks are assigned
to harmonics of the different fundamental frequency candidates
by minimizing the distance between the ideal harmonic frequency
positions and the detected peak positions. We estimate the inhar-
monicity coefficient in each frame based on the detected partial
peaks [3]. Results of the previous frames were used as initial in-
harmonicity values for the current frame and hence for more accu-
rate partial estimation. The first frames were calculated with initial
values based on [1].

DAFX-3



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 2: Schematic model of the analysis framework.

In addition, a window function is applied as a weighting func-
tion for variables of the tracking algorithm. These variables de-
termine the frequency range around each partial where peaks are
taken into account as well as the predicted frequency values of
each partial for the following frame. A comparison of common
window functions yields best performance for the use of a Kaiser
function. The window length is fitted to the note duration and
hence has the biggest impact in the middle of each note and al-
most no impact at the start and end position. Using this window,
the considered search area for frequency peaks around each ideal
harmonic frequency position is adjusted frame-wise. It adapts the
extent of the range around each calculated partial which is taken
into account for the performed peak picking to the relative note
position.

Hence, at the temporal center of each note event this range is
the largest and therefore more susceptible for frequency changes.
Furthermore, the window function affects the amount of past frames
taken into account when calculating the predicted harmonic fre-
quencies of the current frame. At the center point of a note event
less frames are considered emphasizing the affinity for frequency
changes. Finally, the weight of magnitudes around each calculated
harmonic frequency position is increased towards the middle of the
note event. So, the comparison in the middle of note events yields
lower dependency of the actual frequency distance but emphasizes
high frequency magnitudes near the theoretical frequency. These
three conditions are needed for an adaptive algorithm which re-
acts sensitive to frequency modulation techniques like bending, vi-
brato, and slide (see Section 2). A typical fundamental frequency
envelope f0(t) for the frequency modulation technique slide is
shown in Figure 3.

Figure 3: Fundamental frequency envelope f0(t) of a slide tone.

The obtained values allow for a correction of octave confu-
sions, which can occur by the presence of weak sub-harmonics
and their multiples, by summing up and comparing the odd and
even harmonics of a note. Unlikely fundamentals are eliminated
when the total energy of even partials falls below a quarter of the
energy of odd partials.

4.5. Offset Detection

The detection of the note offset is performed based on the results of
the partial tracking procedure as explained in the previous section.
We obtain a temporal envelope for each time framem by summing
up the harmonic magnitude values Mh(m) over all harmonics as

fEnv(m) =

H∑
h=1

Mh(m). (5)

Figure 4 illustrates an example of a temporal magnitude envelope
of a guitar note. The offset is obtained by detecting the first frame
after the envelope peak with less than 5 % of the peak magnitude.
Furthermore, an onset correction is performed by searching the
lowest point of inflection before the peak. Therefore, the consid-
ered time area of the note excerpt is expanded in forward direction
by 200 ms as safety margin. We initially smooth the envelope
function by convolving it with a three-element-rectangle window
to avoid the detection of random noise peaks.

Figure 4: Temporal magnitude envelope fEnv(m) of the summed
harmonics of a guitar note.
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4.6. Feature Extraction & Classification

Based on the extracted note parameters onset, offset, and pitch,
various audio features can be extracted that allow to discriminate
high-level parameters such as the played string or the applied play-
ing techniques. We compute features on a frame-by-frame level
and aggregate the features over the duration of each note event
using different statistical measures such as minimum, maximum,
mean, or median. A list of all 774 features can be found in ap-
pendix 8.2. A classification based on this amount of feature di-
mensions leads to high computational load and potential model
overfitting. Therefore, prior to training the classification models,
we first apply the feature selection algorithm Inertia Ratio Maxi-
mization using Feature Space Projection (IRMFSP) [16] for each
classification task in order to reduce the dimensionality of the fea-
ture space. The amount of reduction depends on the performed
classification task and is optimized separately.

For classification, we use a multi-class Support Vector Ma-
chine (SVM) with Radial Basis Function (RBF) kernel. We per-
form three independent classification tasks—classification of the
string number with 6 classes (see Table 1) as well as classifica-
tion of the plucking style and expression style with three and six
classes, respectively (see Table 2).

4.7. Plausability Filter

Depending on the classification task, the results can be aggregated
over multiple notes using majority voting to obtain more robust
classification. Furthermore, knowledge about typical guitar per-
formance can be exploited in order to avoid impossible finger-
ing positioning or improbable usage of playing techniques. In
this section, two approaches to correct the classification results
will be described. First, an intra-note plausibility filter deals with
single notes and notes that are played simultaneously such as in
chords. Second, an inter-note plausibility filter takes into account
sequences of consecutive notes. Both filter aggregate classification
results in dependence of the performed task for higher robustness.
Expression styles are unified over all notes of a note event, pluck-
ing styles are aggregated over entire licks assuming that during one
subsequently played lick no changes in plucking style occur.

4.7.1. Intra-Note Plausability Filter

The first corrections are applied to the estimated expression style.
The most obvious restriction is a duration limit for the dead note
class. Notes that are classified as dead notes and last longer than
0.6 seconds, are re-evaluated and the next probable expression
style class is chosen. Second, we assume that all remaining ex-
pression styles (except the non-decorated normal expression style)
are only plausible if less than three simultaneous pitches are de-
tected by the multi-pitch estimation. Third, frequency modulated
expression styles are compared against psychoacoustical thresh-
olds so that detected bending, slide, or vibrato techniques with not
noticeable frequency differences are set to the normal expression
style. Especially for slide and bending, a check of the start and
end pitch within the note is performed to detect and eliminate mi-
nor frequency changes below one semitone. Finally, the estimated
pitches when marked as class harmonics are compared to possible
harmonic pitches of the known guitar string tuning. Only certain
pitches can occur at certain positions of the fretboard. Hence, har-
monics detections with impossible pitch values are set to expres-
sion style normal.

Figure 5: Fretboard MIDI number references for standard tuning.
The first column refers to empty string pitches.

A second filter is applied to correct the string number. Each
position on the fretboard is connected to a fixed pitch as shown
in Figure 5, depending on the instrument tuning. Most pitch val-
ues within the pitch range of the guitar can be played on different
fretboard position, hence, on different strings.

The first assumption of this filter connects to the expression
style results by setting the probability of empty strings to zero if
a decorating expression style has been classified. In addition, all
probabilities from strings not allowing to play the observed pitch
at any fretboard position are set to zero. Considering polyphonic
fingerings, two or more pitches might collide by being assigned
on the same string. To avoid this interception, our algorithm pro-
vides alternative fingering positions based on the string probabili-
ties. Large spreads of the fingering are likely to occur as a result
of alternative string assignment by using simple replacement to
the most probable neighbour strings. Hence, spreads larger than
four frets are eliminated. Instead, fingerings with smaller spreads
are preferred by weighting their probabilities based on a computed
fretboard centroid. Depending on the contribution of the fingering
around the fretboard centroid the probability of each classification
is lowered respectively to its relative fret and string distance to the
centroid. Highest distances correspond to most intense lowering
by half of the classification probability.

4.7.2. Inter-Note Plausability Filter

The inter-note plausability filter can correct classification results
based on the parameters of preceding and subsequent notes. The
first attempt of this filter is to find similar pitches played on the
same string. Under the condition of comparable magnitudes and
small gaps at the note borders notes are tied. As a consequence, de-
tected expressions styles such as dead note become impossible for
tied notes and are corrected. When comparing consecutive finger-
ings, fast and commonly applied position jumps (fingering changes
with high local distances) are highly improbable if empty strings
are not involved. Again, the fretboard centroid is used to weight
and determine the most likely fingering if such jumps occur. This
depends on the occurrence rate as well as the probability values
of string estimation. The same corrections are performed for har-
monic expression styles. Due to the characteristic of this playing
technique, the fingering hand holds the string at an alternative fret
position to obtain the perceived pitch. Here also the fretboard cen-
troid is used to find the most probable position.

5. EVALUATION

For the evaluation of the proposed transcription algorithm, we use
the common evaluation measures Precision, Recall, F-Measure,
and Accuracy. In this section, a novel dataset of electric guitar
recordings with extensive annotation of note parameters will be in-
troduced. This dataset served as ground-truth in our experiments.
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All results presented in Section 5.3 are based on 10-fold cross val-
idation experiments.

5.1. Dataset

For the evaluation tasks, our novel dataset was recorded and man-
ually annotated with all note parameters discussed in this paper.
Six different guitars in standard tuning (see Table 1) were used
with varying pick-up settings and different string measures to en-
sure a sufficient diversification in the field of electric guitars. The
recording setup consisted of appropriate audio interfaces 4 which
were directly connected to the guitar output. The recordings are
provided in one channel RIFF WAVE format with 44100 Hz sam-
ple rate. The parameter annotations are stored in XML format.

The dataset consists of two sets. The first one created exclu-
sively for this work contains all introduced playing techniques (see
Table 2) and is provided with a bit depth of 24 Bit. It has been
recorded using three different guitars and consists of about 4700
note events with monophonic and polyphonic structure. As a par-
ticularity the recorded files contain realistic guitar licks ranging
from monophonic to polyphonic instrument tracks. In addition, a
second set of data consisting of 400 monophonic and polyphonic
note events with 3 different guitars is provided. No expression
styles were applied here and each note event was recorded and
stored in a separate file with a bit depth of 16 Bit [3]. The com-
bined dataset will be made available as a public benchmark for
guitar transcription research5.

5.2. Experimental Procedure

For the onset detection, a detection within a tolerance of 50 ms to
the annotated ground truth is considered as true positive. Since the
offset detection is a harder task (due to smoothly decreasing note
envelopes), a tolerance of 200 ms is used. Because of the time-
frequency transform the duration of one additional frame (5 ms)
has to be considered to obtain the effective tolerance of each tem-
poral detection. The frequency tolerance adapts to the pitch and
is scored as correct if both annotated and detected frequencies are
rounded to the same MIDI pitch numbers. The three classifica-
tion tasks discussed in Section 4.6 are measured using the mean
normalized class accuracy.

5.3. Results

The performance of the final system for onset detection, offset de-
tection, and pitch estimation are shown in Table 4. Because of
the high specialization towards applications of guitar recordings
the results clearly outperform existing approaches. Previous on-
set detection methods are on average placed around 90 % accu-
racy [4, 17], pitch estimation methods reached values up to 90 %
[8, 5, 6].

The results of classification tasks are given in Table 5 - 7. In
general, the typical decrease of accuracy for a higher number of
classes can be observed. The string estimation still performed with
good discrimination results of 82 % average accuracy including
polyphonic estimation and the use of plausability filtering. The
results differ from previous work [3, 10] where average accura-
cies around 90 % were reached due to different classification and
evaluation methods. Plucking style estimation is performed with a

4Tascam US 1641, M-Audio Fast Track Pro
5http://www.idmt.fraunhofer.de/en/business_units/smt/guitar.html

Table 4: Precision, Recall and F-Measure results of onset detec-
tion, offset detection, and pitch estimation.

Detection Function Precision Recall F-Measure
Onset 0.98 0.99 0.99
Offset 0.98 0.98 0.98

Pitch Estimation 0.95 0.98 0.96

Table 5: Accuracy results of the string estimation in percent dis-
played in a confusion matrix. Average accuracy = 82 %.

st
ri

ng
(c

or
re

ct
) 1 81.3 16.6 2.1 0.0 0.0 0.0

2 5.7 86.0 7.1 1.1 0.0 0.0
3 0.2 9.4 78.8 9.7 1.8 0.2
4 0.0 0.6 6.9 81.8 9.8 0.9
5 0.0 0.8 0.7 13.1 76.7 8.6
6 0.0 0.3 0.5 2.6 12.1 84.5

1 2 3 4 5 6
string (classified)

very good score of 93 % average accuracy comparable to Abeßer
et al. [2]. Here, a plausability filter was applied to combine the
results of one note event. The classification of expression styles
achieved good average accuracy of 83 %. State-of-the-art meth-
ods offer comparable results depending on the number of classes
being distinguished. The plausability filter for expression styles
introduced in Section 4.7 is used for correction and aggregation of
the classification results.

Table 6: Accuracy results of the plucking style estimation in per-
cent displayed in a confusion matrix. Average accuracy = 93 %.
For abbreviations see Table 2.

st
yl

e
(c

or
re

ct
)

F 83.3 16.7 0.0
P 2.5 95.4 2.0
M 1.9 1.9 96.2

F P M
style (classified)

With the automatically extracted transcription, guitar-specific
tablature notation can be generated including information about
the used playing techniques. A sample of the dataset is visualized
in Figure 6. The tablature notation, which was automatically ex-
tracted from the audio recording, is compared against the reference
notation taken from the dataset.

6. CONCLUSIONS

In this paper we introduced a novel algorithm for guitar transcrip-
tion. The algorithm includes different estimation techniques for
score-based and instrument-based parameters from isolated guitar
recordings. By applying different optimization approaches, we re-
ceived excellent detection results for onset, offset and pitch with
an average accuracy of 96 % and higher. Estimations of more
complex instrument-based parameters were performed with good
results of 82 % and higher. Furthermore, a novel dataset was cre-
ated and published to evaluate the proposed methods. We showed
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Figure 6: Polyphonic guitar lick of the dataset.
Top: Manually notated tablature - Legend: FN above each note annotates the Plucking Style ’Finger Style’ and Expression Style ’Normal’.
Bottom: Automatically notated tablature - Legend: Plucking Style is obtained for the entire lick. The letters above each note denote the
Expression Style (NO - normal, HA - Harmonics).

Table 7: Accuracy results of the expression style estimation in per-
cent displayed in a confusion matrix. Average accuracy = 83 %.
For abbreviations see Table 2.

st
ly

e
(c

or
re

ct
) NO 94.8 0.7 0.5 0.9 1.5 1.6

BE 14.0 71.3 12.3 1.2 0.0 1.2
SL 20.7 11.2 50.9 8.6 4.3 4.3
VI 25.3 1.2 3.1 66.7 3.1 0.6
HA 10.5 0.0 0.0 2.0 82.4 5.2
DN 7.7 0.0 0.0 0.8 10.7 80.8

NO BE SL VI HA DN
style (classified)

that an automatic transcription of guitar-based tablature is possible
with a high accuracy.
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8. APPENDIX

8.1. List of Onset Detection Functions

In this work, we compared the onset detection functions Spectral
Flux [4], Rectified Complex Domain [4], Weighted Phase Devia-
tion [4], High Frequency Content [23], Modified Kullback-Leibler
Distance [23], Foote [23], and Pitchogram Novelty [21].

8.2. Audio Features

Table 8: Feature list for classification. If features generate more
than one return-value the amount is written in brackets after the
feature name. Novel features are marked bold.

· Spectral Centroid
· Relative Spectral Centroid
· Spectral Roll Off
· Spectral Slope
· Spectral Spread
· Spectral Decrease
· Spectral Crest
· Spectral Flatness
· Inharmonicity Factor
· Tristimulus 1,2 und 3 (3)
· Spectral Irregularity

· Odd To Even Harmonic Energy Ratio
· Harmonic Spectral Centroid
· Harmonic Magnitude Slope
· Relative Harmonic Magnitude (14)
· Normalized Harmonics Frequency
Deviation (14)
· Frequency Statistics: Maximum,
Minimum, Mean, Median, Variance
(5)
· Frequency Statistics: Maximum,
Minimum, Mean, Median, Variance
(5)

Each frame-based audio feature listed so far is condensed to 14 statistic
values per note. Maximum, Minimum, Mean, Variance, Median, Skew-
ness and Kurtosis are computed for the attack and the decay part of each
note. Both are known durations from Section 4.5 because of the per-
formed temporal refinement. In Addition several novel note-based fea-
tures are appended to the feature vector:

· High Frequency Pre Onset
Arousal
· Magnitude Range
· Envelope Sum
· Temporal Centroid
· Envelope Fluctuation(2)
· Envelope Modulation Fre-
quency and Range

· Envelope Part Length (3)
· Temporal Slope (2)
· Range Attack Time Deviation
· Mean Attack Time Deviation
· Variance Attack Time Deviation
· Subharmonic Attack Energy (21)
· Subharmonic Decay Energy (21)

Concatenation of all features yields a feature vector of 774
elements. The detailed computation steps are explained in [24].
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