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ABSTRACT
In this paper, a physics-based model for a snare drum will be dis-
cussed, along with its finite difference simulation. The interac-
tions between a mallet and the membrane and between the snares
and the membrane will be described as perfectly elastic collisions.
A novel numerical scheme for the implementation of collisions
will be presented, which allows a complete energy analysis for the
whole system. Viscothermal losses will be added to the equation
for the 3D wave propagation. Results from simulations and sound
examples will be presented.

1. INTRODUCTION

Physics-based simulation of musical instruments is now an active
research topic, both for acoustical studies and sound synthesis, and
various numerical techniques can now tackle a wide range of com-
plex systems. Percussion instruments, and drums in particular,
with their various interacting components, constitute attractive and
challenging target problems. From the first attempts at simulat-
ing single membranes in 2D, research has rapidly moved towards
the simulation of complete instruments (see [1] for a review.) In
recent years, a physical model for nonlinear circular membranes
with snares has been proposed [2]. Finite difference methods have
been employed to model timpani drums [3], snare drums [4] and
nonlinear double-headed drums (i.e., tom toms and bass drums)
[5].

In this paper, a physics-based simulation of a snare drum will
be presented. The model consists of two membranes (batter and
carry head), coupled with the surrounding air and connected by a
rigid shell. A set of snares (thin metal wires) is placed below the
carry head, in contact with it. In the present work, a novel energy
conserving scheme for the simulation of collisions between the
snares and the resonant membrane will be presented. This con-
stitutes a major improvement with respect to previous attempts
[4], for which numerical stability is not guaranteed (and is in-
deed a problem in implementation.) A similar approach can be
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adopted for the mallet-membrane interaction, which is included
in this model, thus giving an energy conserving scheme for the
whole system. When used as a sound synthesis tool, the usual 3D
scheme describing the acoustic field produces artefacts that harm
the quality of the sound. This problem can be addressed by adopt-
ing a more realistic model of 3D wave propagation that includes
viscothermal losses.

A major issue broached in this paper is the numerical simu-
lation of collisions, which play an important role in many fields,
including engineering and computer graphics, and the literature
on the subject is abundant (see [6] for a review). A mainstream
approach for collision detection in many applications is the use
of penalty-based methods, based on repulsive forces generated by
slight interpenetration between the objects. In musical acoustics,
many instruments rely on collisions for the production of sound,
with an obvious example given by percussions. Several approaches
have been used in the past, and in many cases this type of interac-
tion has been modelled as a nonlinear Hertzian force depending on
the mutual penetration of the colliding objects [7]. This model has
been successfully adopted, e.g., for the simulation of the hammer-
string interaction in pianos [8, 9].

For totally elastic collisions, these methods could be consid-
ered as unphysical, as they allow interpenetration in otherwise
rigid bodies, and simulations of collision without the need for con-
tact forces have been proposed [10]. Nonetheless, penalty-based
methods have many advantages, as they offer a mathematically
tractable and phenomenologically accurate description of the be-
haviour of the system, and will therefore be adopted in this study.
Furthermore, the maximum penetration allowed can be bounded
by choosing suitable values for the coefficients. When it comes to
numerical schemes, the risk of instability is always present, and
is particularly pronounced for rigid collisions. Energy-based finite
difference approaches, which have a long history [11, 12], provide
useful analysis tools in this sense but, for nonlinear interactions,
existence and uniqueness of a solution are not always guaranteed.
For the particular choice of penalty force used in this work, how-
ever, a uniqueness result has been proved recently in the case of a
mass in contact with a rigid barrier [13].

This paper is organised as follows: a brief description of the
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underlying physical model will be given in Sec. 2, while its numer-
ical implementation using finite difference methods will be dis-
cussed in Sec. 3. Sec. 4 presents an analysis of the implementation
of the collision scheme; finally, some results and sound examples
will be shown in Sec. 5.

2. DESCRIPTION OF THE MODEL

The geometry of the snare drum model under consideration is shown
in Figure 1. Two circular membranes of equal radius R are posi-
tioned within a finite enclosure V of air, with which they are cou-
pled. They are placed parallel to one another with centres along
the z axis, and are defined over regionsMb at z = zb andMc at
z = zc, respectively, with

Mb =Mc =
{

(x, y) |x2 + y2 ≤ R2} . (1)

A rigid cylindrical cavity connects the membranes, by enclosing
the portion of air between them (zc ≤ z ≤ zb).

As mentioned before, the important feature of snare drums is
the presence of a set of snares in contact with the resonant mem-
brane. Generally, these are 12-15 in number. For the sake of
simplicity and to avoid the proliferation of notation, the follow-
ing analysis will concentrate on a single snare of length L defined
over a 1D domain Ds. In implementation, however, it is straight-
forward to include several snares in the model.

The upper membrane is struck by a mallet, modelled as a
lumped object, while the bottom membrane, together with the snare,
is set into motion by the air pressure inside the cavity generated by
the blow. Absorbing conditions are applied at the walls of the air
box V .

As a similar model has been employed already [4], some of
the details of the system will be omitted here.

Figure 1: Geometry of the model.

2.1. Membranes

Let the index i = b, c identify batter and carry head, respectively.
The transverse displacements wi = wi(x, y, t) of the membranes
at some position (x, y) ∈ Mi and time t can be described by
lossy wave equations with additional terms due to coupling con-
ditions with the air and external collision forces. Batter and carry
membrane equations read, respectively:

ρb∂ttwb = Lb[wb] + F+
b + F−b + FM , (2)

ρc∂ttwc = Lc[wc] + F+
c + F−c + Fs + F0 + FL. (3)

with

Li[wi] = Ti∆2Dwi − 2ρiσ0,i∂twi + 2ρiσ1,i∆2D∂twi, (4)

where ∆2D = ∂xx + ∂yy is the 2D Laplacian operator in Carte-
sian coordinates and ∂t denotes partial time differentiation. Li[wi]
groups together the linear terms in the wave equation, while the
other terms are the air pressure exerted above (F+

i ) and below
(F−i ) each membrane. The last term FM in (2) describes the
mallet-membrane interaction. The equation for wc is almost iden-
tical to (2), except for the form of the collision term Fs and for
the presence of two additional terms F0 and FL resolved at the
two ends of the string attached to the membrane (see Sec. 2.5).
The explicit expression for the coupling and collision terms will
be discussed below, while the various physical parameters in (2),
(3) and (4) are listed in Table 1. Additional terms, like stiffness or
tension modulation nonlinearities, could be easily included in this
model. For the sake of simplicity, their discussion is omitted in
this work.

At the rim of both membranes, fixed boundary conditions are
applied.

Table 1: List of physical parameters used in this model.

Membranes (i = b, c)
wi(x, y, t) membrane displacement (m)
Ti tension (N/m)
ρi surface density (kg/m2)
σ0,i frequency independent loss coefficient (1/s)
σ1,i frequency dependent loss coefficient (m2/s)

Air
Ψ(x, y, z, t) acoustic velocity potential (m2)
ca wave speed (m/s)
ρa density (kg/m3)
σa viscothermal loss coefficient (m)

Mallet
zM (t) mallet position (m)
M mass (kg)
κM stiffness parameter (N/mα)
α nonlinear exponent

Snare
u(χ, t) snare displacement (m)
Ts tension (N)
ρs linear density (kg/m)
σ0,s frequency independent loss coefficient (1/s)
σ1,s viscosity coefficient (m2/s)
κs stiffness parameter (N/mβ)
β nonlinear exponent

2.2. Air

In this model, the equation for air propagation adopted is:

∂ttΨ = c2a∆3DΨ + caσa∆3D∂tΨ, (5)
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where Ψ(x, y, z, t) is an acoustic velocity potential as in [14] and
∆3D = ∂xx + ∂yy + ∂zz is the 3D Laplacian operator. The co-
efficient σa for viscothermal losses generally depends on various
physical parameters, among which temperature and humidity, but
values for it generally lie in the range of 10−7 to 10−6 m [14].

The drum shell S is modelled as a rigid, reflective boundary
encircling the cylindrical region between the membranes. This can
be obtained by imposing the normal derivative of Ψ to be zero
across the shell:

n · ∇3DΨ = 0. (6)

where ∇3D is the gradient and n is the unit vector normal to the
shell surface. Absorbing conditions are applied over the bound-
aries ∂V of the computational region. In this work, first order
Engquist-Majda conditions will be adopted [15], as they are easy
to implement within an energy-based framework. Another possi-
bility is the use of PMLs [16].

2.3. Coupling conditions

Coupling conditions between the membranes and air can be ob-
tained by imposing the continuity of pressure and velocity at the
interface. In terms of Ψ, these conditions may be written as:

F+
i = −ρa lim

z→z+i
∂tΨ |Mi F−i = ρa lim

z→z−i
∂tΨ |Mi , (7)

∂twi = − lim
z→z−i

∂zΨ |Mi= − lim
z→z+i

∂zΨ |Mi . (8)

These conditions hold over the membrane regionsMb andMc.

2.4. Mallet interaction

The mallet exciting the membrane is modelled as a lumped, but not
necessarily point-like object, with mass M and position zM (t) ∈
R measured relatively to zb. Let the contact region over Mb be
defined by a distribution gb(x, y), with

∫
Mb

gb = 1. For a mallet
striking the membrane from above, the equation of motion and the
collision term appearing in (2) can be written as:

Mz̈M = fM , FM = −gb fM , (9)

where the dot symbol represents total time differentiation. It is
usual in the literature to express the collision force fM as a power
law in terms of the mutual interpenetration η of the two objects
[3, 7]:

fM = κM [η]α+, η =

∫
Mb

gb wbdx dy − zM (10)

with stiffness parameter κM > 0 and α > 1, and which is active
only when η > 0; the symbol [ · ]+ is used in this article to indicate
the positive part, [η]+ = (η + |η|)/2. Such an approach traces its
origins in the work of Hertz at the end of 19th century (see [6] for
a historical review.)

An equivalent approach, which leads to an energy conserving
numerical scheme (see below), is to express the collision force fM
as the derivative of a potential ΦM , which again will depend on
the average distance η between the mallet and the membrane:

fM =
dΦM
dη

=
Φ̇M
η̇
, ΦM =

κM
α+ 1

[η]α+1
+ . (11)

2.5. Snare

A single snare can be modelled as a 1D string with internal losses
and an additional term describing the collisions with the mem-
brane. The equation of motion can thus be written as:

ρs∂ttu = Ts∂χχu− 2σ0,s∂tu+ 2σ1,s∂χχ∂tu−Fe. (12)

Note the change of sign in the collision force density Fe, as in this
case the string is striking the membrane from below. A stiffness
term could be included as well, without complicating too much the
implementation. As before, in order to define a function Gs(x, y)
that distributes collisions over the membrane, it is necessary to in-
troduce a two-element affine mapping π(χ) : Ds → Ms, from
the 1D domain of the snare to the resonant membrane, that projects
each point of the string onto the corresponding point on the mem-
brane above it. A natural choice for Gs is

Gs(x, χ) = δ(2)(x− π(χ)), (13)

where x = (x, y) and δ(2) is a 2D Dirac delta function. The
collision density Fs can thus be written as

Fs =

∫
Ds

Gs(x, χ)Fe(χ)dχ. (14)

Analogously to the mallet-membrane case, Fe(χ) can be written
in terms of a distributed potential Φs(χ):

Fe(χ) =
∂tΦs
∂tξ

, (15)

with

Φs(χ) =
κs

β + 1
[ξ]β+1

+ , ξ(χ) = u−
∫
Mc

Gs wc dx dy.

(16)
Once again, note the change in sign in the definition of ξ(χ) com-
pared to the corresponding quantity η.

The choice of perfectly elastic collisions between the snare
and the membrane must be considered only as a starting point for
simulation. More refined models that introduce damping in contact
forces can be adopted, like that proposed by Hunt and Crossley
[17], and could be perceptually important in determining the decay
time of the sound. This model requires, however, an experimental
investigation of the loss coefficient, which is outside the scope of
this paper.

At the end points of the snare, boundary conditions must be
carefully analysed. Let g0 = δ(2)(x − π(0)) be the distribution
function from the end of the snare at χ = 0 to the corresponding
point on the membrane Mc. When the snare is attached to the
membrane, their displacements must be the same at the end point:

u|χ=0 =

∫
Mc

g0 wc dx dy. (17)

Furthermore, the force density acting onMc at the same point can
be written as:

F0 = g0 f0, f0 = Ts∂χu|χ=0 + 2ρsσ1,s∂tχu|χ=0. (18)

These expressions can be easily arrived at through energy analysis
techniques (see Sec. 2.6). Analogous conditions can be written for
the edge at χ = L.
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2.6. Energy balance

A thorough analysis of the model presented above by means of fre-
quency methods can be ruled out, given the simultaneous presence
of several interacting components with strongly non-linear cou-
plings and irregular geometry. To this end, an alternative approach
is given by energy methods.

One way of calculating the energy of the system is to multiply
Eqs. (2), (3), (5), (9) and (12) by the first time derivative of the
variable on the left side of the equation, and then to integrate over
the corresponding domain (e.g., multiply (2) by ∂twb and integrate
overMb, etc.) Using integration by parts leads to an energy bal-
ance and to the determination of suitable boundary and coupling
conditions, as outlined below.

An energy balance for the whole system can be arrived at by
summing the contributions for the various components, and can be
written as

dH

dt
= −Q + B, (19)

where H = Hb + Hc + HM + Hs + Ha is the total energy of
the system, Q represents all the loss terms and B groups together
boundary terms. The explicit expressions for the various contribu-
tions to H are given below:

Hi =

∫
Mi

ρi
2

(∂twi)
2 +

Ti
2
|∇2Dwb|2 dx dy, i = b, c, (20a)

Ha =

∫
V

ρa
2c2a

(∂tΨ)2 +
ρa
2
|∇3DΨ|2 dx dy dz, (20b)

HM =
M

2
ż2M + ΦM , (20c)

Hs =

∫
Ds

ρs
2

(∂tu)2 +
Ts
2

(∂χu)2 + Φs dχ, (20d)

where ∇2D represents the 2D gradient. In order for the scheme
to be energy conserving, all the terms in B must sum to zero, and
it is indeed the case here, while contributions to Q come from
the loss terms in the membranes’ and snare’s equations, plus from
absorbing conditions over the boundaries of V . It can be shown
that each of these individual terms is positive, thus leading to a net
dissipation of energy in the system.

3. FINITE DIFFERENCE SCHEMES

In this section, the implementation of the model described above
will be carried out using the finite difference method [18].

The discretisation in space of the various components will be
performed over different Cartesian grids in 1D, 2D or 3D depend-
ing on the dimension of the domain. Time discretisation, instead,
will be unique for the entire system, with temporal step k = 1/Fs
defined as the inverse of the sampling frequency Fs. Spatial grid
steps can be derived in terms of k according to stability conditions
analysed below. A one dimensional function, like u(χ, t) for ex-
ample, will be approximated by a discrete function unl , over a grid
with step hs (where n and l represent the time and spatial index, re-
spectively.) However, it is very convenient to represent grid func-
tions as column vectors, regardless of their dimensions. If in the
1D case it is obvious how to perform such operation, in the 2D and
3D cases several options are available. On a 2D grid, points will
be grouped columnwise along the y axis, while in the 3D the same
operation will be applied to successive horizontal slices along the
vertical axis for increasing values of z.

Let un be the vectorised form of unl . For such a variable, one
can define forward and backward time shift operators as following:

et+un = un+1, et−un = un−1. (21)

Time difference and averaging operators can be obtained from
combinations of the previous ones, and are listed in Table 2. Space
difference operators, when operating on vectors, can be expressed
as matrices [18].

Table 2: List of time difference and averaging operators.

Time difference operators
δt+ = (et+ − 1)/k forward difference
δt− = (1− et−)/k backward difference
δt· = (et+ − et−)/2k centred difference
δtt = (et+ − 2 + et−)/k2 second difference

Time averaging operators
µt+ = (et+ + 1)/2 forward average
µt− = (1 + et−)/2 backward average
µt· = (et+ + et−)/2 centred average

3.1. Membranes

Let wn
i be the discrete approximations in vector form of the mem-

branes’ displacements wi(x, y, t) over grids of spacing hi, with
i = b, c. Equations (2) and (3) can be thus discretised as

ρbδttw
n
b = lb[w

n
b ] + f+,nb + f−,nb + fnM , (22)

ρcδttw
n
c = lc[w

n
c ] + f+,nc + f−,nc + fns + fn0 + fnL. (23)

The operator li[wn
i ] is the discrete counterpart of (4):

li[w
n
i ] = TiD�,iw

n
i −2ρiσ0,iδt·w

n
i +2ρiσ1,iδt−D�,iw

n
i (24)

where D�,i is the matrix form of the 2D Laplacian ∆2D , which is
generally different between the two membrane grids.

3.2. Air

Let Ψn be a discrete approximation of Ψ(x, y, z, t) over a 3D grid
of spacing ha. A finite difference approximation for (5) can be
written as

δttΨ
n = c2aD�Ψn + caσaδt−D�Ψn, (25)

where D� is the matrix representation of the 3D Laplacian ∆3D .
The last term introduces a frequency-dependent loss that in-

creases with frequency. It is critical to include viscothermal losses
in this model in order to suppress spurious artefacts that are per-
ceptually very relevant. More will be said about this in Sec. 5.3.

The implementation of boundary conditions over the shell, ab-
sorbing conditions over the walls and coupling conditions with the
membranes will be omitted, as they have been analysed several
times in recent works. The interested reader is referred to [4, 5].
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3.3. Mallet

Let znM and fnb be the sampled versions at time t = nk of zM (t)
and fb(t), respectively. Equation (9) becomes:

Mδttz
n
M = fnb , fnb = −gbf

n
b , (26)

where gb is a column vector representing the distribution gb(x, y).
Normalisation is obtained by imposing h2

b1
Tgb = 1, where 1T is

the transpose of a column vector consisting of ones.
As discussed in Sec. 2.4, fnb can be expressed in terms of a

discrete potential ΦnM :

fnb =
δt·Φ

n
M

δt·ηn
, ηn = h2

bg
T
b wn

b − znM , (27)

where ΦnM = ΦM (ηn).

3.4. Snare

The displacement u(χ, t) of the snare can be represented by the
vector un, over a 1D grid of spacing hs. Equation (12) can be
written as:

ρsδttu
n = TsDχχun − 2ρsσ0,sδt·u

n+

+ 2ρsσ1,sδt−Dχχun − fne , (28)

where Dχχ is the matrix representation of the operator ∂χχ. The
discrete version fs of the collision force density Fs in (14) is de-
fined as:

fns = Gsf
n
e , (29)

where Gs is the matrix form of the linear operator
∫
Ds
Gs ( · ) dχ.

As in the mallet case, it is possible to express fe in terms of a
discrete potential Φn

s

fne =
δt·Φ

n
s

δt·ξn
, (30)

Φn
s =

κs
β + 1

[ξn]β+1
+ , ξn = un −GT

s wn
c . (31)

The vector by vector division in (30) is intended here and in the
remainder of the article as an element-by-element operation.

At the end point l = 0, continuous boundary conditions (17)
and (18) can be discretised as

un0 = h2
cg
T
0 wn

c , (32a)

fn0 = g0f
n
0 , fn0 = (Tsδχ− + 2ρsσ1,sδt−δχ−)un0 , (32b)

where g0 is the discrete approximation of the distribution g0. Anal-
ogous expressions can be found for the other end point. When
applied to the grid point un0 , the operator δχ− would give:

δχ−u
n
0 = (un0 − u∗,n−1 )/hs. (33)

As u∗,n−1 lies outside of the 1D grid, it is sometimes called virtual
or ghost point (hence the notation ∗). Equation (32b) must be con-
sidered as a formal way of determining suitable update conditions
for the scheme (see Sec. 4.2.)

3.5. Energy and Stability

In the numerical case, an energy balance corresponding to (19) can
be written as:

δt−h
n+1/2 = −qn + bn, (34)

where hn+1/2 is the numerical energy of the system at time
(n + 1/2)k, qn represents losses and bn the boundary terms. As
in the continuous case, hn+1/2 can be written as a sum of the fol-
lowing terms:

h
n+1/2
i = h2

i

(
ρi
2
|δt+wn

i |2 +
Ti
2

((Dx+wn
i )T · et+(Dx+wn

i ))

+
Ti
2

((Dy+wn
i )T · et+(Dy+wn

i ))

)
, i = b, c, (35)

hn+1/2
a = h3

a

(
ρa
2c2a
|δt+Ψn|2 +

ρa
2

((Dx+Ψn)T · et+(Dx+Ψn))

+
ρa
2

((Dy+Ψn)T · et+(Dy+Ψn))

+
ρa
2

((Dz+Ψn)T · et+(Dz+Ψn))
)
, (36)

h
n+1/2
M =

M

2
(δt+z

n
M )2 + µt+ΦnM , (37)

hn+1/2
s = hs

(
ρs
2
|δt+un|2 +

Ts
2

((Dχ+un)T · et+(Dχ+un))

+ 1Tµt+Φn
s

)
, (38)

where | · | denotes the Euclidean norm of a vector, and the various
difference matrices represent forward spatial difference operators
[19]. It is understood that, in the air term, the z derivative be cal-
culated everywhere but across the two membranes. The boundary
term bn is identically zero. When the system is lossless, and re-
flective conditions are applied over the walls of the box, the total
energy hn+1/2 is conserved to machine accuracy. See Sec. 5.1 for
details. Otherwise, energy is monotonically dissipated.

By requiring that all the energy terms be positive, stability con-
ditions for the schemes can be arrived at. For the membranes and
snare schemes, the presence of collisions does not alter the usual
conditions:

h2
i ≥ 2k2Ti/ρi + 8σ1,ik, i = b, c, (39)

h2
s ≥ k2Ts/ρs + 4σ1,sk. (40)

For the air scheme, stability condition depends on σa:

h2
a ≥ 3c2ak

2 + 6caσak. (41)

4. NUMERICAL IMPLEMENTATION

In this section, the numerical implementation of mallet-membrane
and snare-membrane collisions will be discussed. In both cases,
it is necessary to solve a nonlinear equation at every time step.
Existence and uniqueness of solution will be analysed.

4.1. Mallet-membrane collision

Consider the mallet and batter membrane schemes first. The up-
date for the membrane points included in the distribution gb will be
coupled to the mallet’s position by the collision force fnb . When all
the terms in (22) and (26) are expanded and air coupling is taken
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into account, the update expressions for wn+1
b and zn+1

M can be
schematically written as

Abw
n+1
b = ωnb [wn

b ,w
n−1
b ,Ψn,Ψn−1]− k2

ρb
gbf

n
b , (42)

zn+1
M = ζnM [znM , z

n−1
M ] + k2fnb /M, (43)

where Ab is a symmetric, positive definite matrix due to losses
and air coupling, and ωnb and ζnM represent linear combinations of
known terms from previous time steps. These two components can
be updated by finding ηn+1 first, then by calculating fnb and finally
by inserting it in (42) and (43). To this end, start by inverting the
system (42) and by multiplying it by h2

bg
T
b , then subtract (43).

After a brief calculation, it is possible to write a nonlinear equation
in rn = ηn+1 − ηn−1 which must be solved at every time step:

rn + γ
ΦM (rn + an)− ΦM (an)

rn
+ bn = 0, (44)

where

γ =
h2
bg
T
b A−1

b gbk
2

ρb
+
k2

M
, an = ηn−1, (45a)

bn = ζn − h2
bg
T
b A−1

b ω
n
b + ηn−1. (45b)

The particular choice of a power law nonlinearity for ΦM guar-
antees a unique solution for (44), as has been shown in [13] for a
simpler case.

4.2. Snare-membrane collision

The implementation of the snare-membrane interaction is some-
what complicated by the fact that the snare is a distributed object,
and by the presence of air coupling and boundary conditions at the
end points. As before, Eqs. (23) and (28) can be schematically
written as

wn+1
c = A−1

c ω
n
c +

k2

ρc
A−1
c (g0f

n
0 + gLf

n
L + Gsf

n
e ) (46)

un+1 = υn/qs − k2fne /(ρsqs), (47)

where ωnc [wn
c ,w

n−1
c ,Ψn,Ψn−1] and υn[un,un−1] depend on

known values of the various variables, Ac is a constant matrix
analogous to Ab and qs = 1 + σ0,sk.

One way to proceed in order to solve this system is to start
by solving for the pointwise forces f0 and fL. Using (32b), it is
possible to write

un+1
0 = − k2

qsρs
fn0 +

1

qs
υn0 , (48)

where the first term on the right hand side replaces derivatives that
could not otherwise be calculated, and fns,0 = 0 because the snare
and the membrane are attached. By multiplying (46) by h2

cg
T
0 and

by imposing condition (32a), it is possible to write fn0 in terms of
the (still unknown) force density fne :

fn0 = φn0 − νT fne , (49)

with φn0 combination of known terms and ν a constant vector. A
similar process can be repeated for fL.

Now, after substituting these expressions for fn0 and fnL back
into (46), it is possible to follow the same procedure used for the

mallet-membrane case. Multiplying (46) by h2
cG

T
s and subtract-

ing this from (47) leads to a nonlinear equation in the unknown
vector rn = ξn+1 − ξn−1 formally similar to (44):

rn + Γ
Φs(r

n + an)−Φs(a
n)

rn
+ bn = 0, (50)

where Γ is a constant, symmetric and positive definite matrix, and
bn and an depend only on known values. Once this equation is
solved, it is possible to calculate fne , and therefore to update the
rest of the scheme explicitly. Uniqueness of a solution in the vector
case is guaranteed by the special form of Γ [20].

As explained in Sec. 2, the present analysis has concentrated
on a single snare for simplicity sake. However, it is straightfor-
ward to extend the derivation of the previous section to Ns > 1
snares. The grid values for the various snares can be consolidated
in a single vector, and expressions like (50) still hold. Conditions
involving the end points, instead, will be transformed into vectors
of size Ns, and their values will generally be coupled.

5. RESULTS

5.1. Energy conservation

As discussed in Sec. 3.5, the numerical energy of the system can
be calculated, and must remain constant to machine accuracy in
the lossless case and without absorbing conditions over the walls
of V . Figure 2 shows the normalised variations of h, together with
the partition into the various components. Such an energy measure
can be extremely useful for debugging purposes, as virtually any
error has an impact on the conservation of h. The drum is excited
by a mallet with M = 0.028 kg and initial velocity v = −5 m/s
at t = 0 s. Seven snares are included in the model.
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Figure 2: Left: normalised variations of the total energy h for a
snare drum in the lossless case. Right: contribution to the total
energy given by the various components (solid black: mallet, red:
upper membrane, blue: lower membrane, dashed black: air, green:
snares). The sample rate is 44 100 Hz.

5.2. Evolution of the system

Figure 3 schematically illustrates what happens when the drum
is excited with parameters given in the previous section. A posi-
tive pressure due to the compression of the membrane is generated
inside the cavity, which pushes the lower membrane downwards,
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Figure 3: Snapshots of the evolution of the snare drum system at
times as indicated. The pressure variations from atmospheric in-
side the cavity are depicted (green: zero variation, red: positive
variation, blue: negative variation.) Displacements have been al-
tered for illustration purposes.

together with the snares. The snares reach their maximum dis-
placement at t = 6 ms, when they start to move upwards. At
about t = 9 ms, the snares hit the membrane almost coherently
(notice the pressure wave generated by the impact). At later times,
the behaviour of the snares becomes rapidly chaotic.

5.3. A note on dispersion error, ABCs and viscosity

It is well-known for the lossless case (σa = 0 m) that the scheme
employed for the 3D air box exhibits significant dispersion er-
ror [21]. Dispersion error essentially means that the ideal linear
relationship between temporal and spatial frequencies is warped in
the finite difference scheme. Numerical wave speed is thus depen-
dent on direction and frequency. In this case, high frequencies tend
to lag along the axial directions. While more accurate schemes ex-
ist for minimising dispersion, such as interpolated schemes [21],
due to the complexity of the full 3D drum embedding presented
here and with the goal of presenting a complete energy analysis,
such schemes are currently distant options. This 3D scheme is of-
ten used with a large oversampling of the grid in order to reduce
dispersion error to acceptable levels, such as in [3] where a 24 kHz
sampling rate was used for a 700 Hz output. The full audible band-
width is of interest here so oversampling was not employed, since
computational costs rise drastically when reducing the time-step

(16x increase for doubling of the sampling rate).
The presence of dispersion error causes some challenges when

absorbing boundary conditions (ABCs) are used. The absorbing
boundaries employed here are of the first-order Engquist-Majda
type:

(∂t − can · ~∇3D)Ψ = 0 , (x, y) ∈ ∂V. (51)

The problem that is encountered with this condition (and any ABC
for that matter), is that it assumes the wave speed to be constant,
but in the finite difference scheme the numerical wave speed is di-
rectionally and frequency-dependent [21]. Another problem with
condition (51) is that it is less effective for incoming waves that
are not normal to the boundary. Ultimately, these two effects com-
bine such that the ABCs only partially absorb incident waves. This
can be seen in the spectrogram displayed in Fig. 4a, which refers
to the output of a simulation without viscosity in the air (σa = 0
m) and without the cavity or snares. The output was taken along a
diagonal above the top membrane and the spectrogram uses a 512
sample Hann window with 75% overlap. It can be seen there is en-
ergy which is slow to decay at approximately 8643 Hz. This is in
fact the temporal frequency (0.196Fs) that experiences the worst
dispersion error (approx. 30% error) for axial-directed waves [21].
There is another peak at 0.304Fs, which is the temporal frequency
pertaining to the worst error for side-diagonal directions (approx.
25% error) [21].

When the cavity and snares are added to the simulation there is
an increase in mid-frequency energy due to the modes of the cavity
and due to the snares activity. A spectrogram for this case is shown
in Fig. 4b. In this case, the energy that is slow to decay causes
audible ‘hiss’ and ‘ringing’ artefacts. Although not presented here,
higher-order ABCs (up to fourth order) were also not effective at
reducing this effect. Fortunately, viscosity in air has a damping
effect that targets high frequencies [14]. A spectrogram from the
same listening position, now with σa = 2 × 10−6 m, is shown in
Fig. 4c. It can be seen that the energy in this band of frequencies
decays faster than in the lossless case. It was found that this added
decay was sufficient to eliminate the audible artefacts.

5.4. Sounds and Videos

Sound examples and videos can be found at the author’s website:
www2.ph.ed.ac.uk/~s1164558

6. FINAL REMARKS

In this paper, a physics-based model of a snare drum has been
presented. A novel, energy conserving numerical scheme for the
simulation of collisions has been discussed, which can be applied
both to the mallet-membrane and to the snare-membrane interac-
tions. This constitutes a major improvement with respect to previ-
ous works, as in this case the stability of the numerical scheme can
be guaranteed.

Another problem that has been discussed in this work is the
effect of dispersion in the 3D Cartesian scheme in virtual embed-
ding simulations such as this. It has been found that, when high
frequencies are created in the model, either by the mallet or by
the snares, a slowly attenuating “hiss” is produced, which domi-
nates the spectrogram of the output sound and harms its quality.
This problem has been interpreted as dispersion of the 3D scheme
exacerbating the proper functioning of absorbing boundary con-
ditions. However, when viscothermal effects are added to the 3D
scheme these artefacts are rendered inaudible.
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Figure 4: Spectrograms for simulation output.

A point which has not been mentioned in this work is the com-
putation cost of this model. As discussed in Sec. 4, the collision
model presented relies on the solution of a nonlinear equation with
the Newton-Raphson method at every time step. If in the case of
the mallet this is just a scalar equation, it becomes a challenging
problem for the snares-membrane interaction, where a vectorial
equation is involved. When a realistic number of snares is included
in the numerical model, the dominant part of the code in terms of
computation time is the solution of the nonlinear system (50), and
not, as one would expect, the update of the 3D field. The former, in
fact, requires the iterative solution of a linear system, which in this
case is dense. It is, therefore, an intrinsic serial operation. As well
known, parallel hardware like GPGPUs can be extremely useful in
accelerating the computation of systems with a high degree of par-
allelisability, and this is becoming a mainstream approach to room
acoustics simulation [22]. However, this hardware is not suited for
cases like the present one, where operations must be performed in
a sequential order. One of the major challenges at the moment is
to find alternative methods that could tackle more effectively this
problem.

7. REFERENCES

[1] J. A. Laird, The physical modelling of drums using digital waveg-
uides, Ph.D. thesis, University of Bristol, 2001.

[2] F. Avanzini and R. Marogna, “A modular physically based approach
to the sound synthesis of membrane percussion instruments,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 18,
no. 4, pp. 891–902, 2010.

[3] L. Rhaouti, A. Chaigne, and P. Joly, “Time-domain modeling and
numerical simulation of a kettledrum,” The Journal of the Acoustical
Society of America, vol. 105, pp. 3545, 1999.

[4] S. Bilbao, “Time domain simulation and sound synthesis for the
snare drum,” The Journal of the Acoustical Society of America, vol.
131, pp. 914–925, 2012.

[5] A. Torin and S. Bilbao, “Numerical experiments with non-linear dou-
ble membrane drums,” in Proc. 4th Stockholm Musical Acoustics
Conference (SMAC 2013), Stockholm, Sweden, 2013.

[6] P. Wriggers, Computational Contact Mechanics, Springer-Verlag
Berlin Heidelberg, second edition, 2006.

[7] F. Avanzini and D. Rocchesso, “Modeling collision sounds: Non-
linear contact force,” in Proc. COST-G6 Conf. Digital Audio Effects
(DAFx-01), Limerick, Ireland, 2001, pp. 61–66.

[8] A. Chaigne and A. Askenfelt, “Numerical simulations of piano
strings. I. A physical model for a struck string using finite difference
methods,” The Journal of the Acoustical Society of America, vol. 95,
no. 2, pp. 1112–1118, 1994.

[9] J. Chabassier, Modélisation et simulation numérique d’un piano par
modèles physiques., Ph.D. thesis, Ecole Polytechnique X, 2012.

[10] D. Kartofelev, A. Stulov, H.-M. Lehtonen, and V. Välimäki, “Mod-
eling a vibrating string terminated against a bridge with arbitrary
geometry,” in Proc. 4th Stockholm Musical Acoustics Conference
(SMAC13), Stockholm, Sweden, 2013.

[11] D. Greenspan, “Conservative numerical methods for ẍ = f(x),”
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