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ABSTRACT

The continuous wavelet transform (CWT) can be seen as a filter-
bank having logarithmic frequency subbands spacing similar to the
human auditory system. Thus, to make computers imitate the sig-
nificant functions of the human auditory system, one promising
approach would be to model, analyze and process magnitude spec-
trograms given by the CWT. To realize this approach, we must be
able to convert a processed or modified magnitude CWT spectro-
gram, which contains no information about the phase, into a time
domain signal specifically for those applications in which the aim
is to generate audio signals. To this end, this paper proposes a fast
algorithm for estimating the phase from a given magnitude CWT
spectrogram to reconstruct an audio signal. The experimental re-
sults revealed that the proposed algorithm was around 100 times
faster than a conventional algorithm, while the reconstructed sig-
nals obtained with the proposed algorithm had almost the same
audio quality as those obtained with the previous study.

1. INTRODUCTION

The continuous wavelet transform (CWT), also known as the
constant-Q transform, is used as a method for time-frequency anal-
ysis, which provides a time-frequency representation of a signal
with an equal resolution on a log-frequency scale (Fig. 1). The
human auditory filterbank is known to have an equal resolution on
a log-frequency scale as with the CWT particularly in a high fre-
quency band [1, 2]. Thus, to let computers imitate the significant
functions of the human auditory system, one promising approach
would be to model, analyze and process spectrograms obtained by
the CWT (CWT spectrogram). In fact, recent studies (see [3–6])
have shown that multiple fundamental frequency estimation per-
forms very well in the magnitude CWT spectrogram domain. Mo-
tivated by this fact, we believe that source separation and sound
manipulation can also work well in the magnitude CWT spectro-
gram domain. However, in order to achieve source separation or
sound manipulation, in which the goal is to produce sound, there
is a need to reconstruct an appropriate time-domain signal after
processing and modifying a magnitude CWT spectrogram. To this
end, this paper proposes a method for estimating the phase from a
given magnitude CWT spectrogram to reconstruct an audio signal.

The phase estimation algorithm from a magnitude CWT spec-
trogram has already been proposed by Irino et al. [7]. Irino’s algo-
rithm consists in iteratively performing the inverse CWT and the
CWT followed by replacing the modified magnitude CWT spec-
trogram with a given magnitude CWT spectrogram. Since the

(a) CWT spectrogram. (b) STFT spectrogram.

Figure 1: Examples of the continuous wavelet transform (CWT)
and short-time Fourier transform (STFT) spectrograms. While
STFT spectrograms have an equal resolution on a linear frequency
scale, CWT spectrograms have an equal resolution on a log-
frequency scale.

computational speed of the CWT is much slower than the short-
time Fourier transform (STFT), this algorithm needs a very long
time for computation. In practical situations, the reduction of the
computational complexity can be extremely important.

The authors and colleagues have thus far proposed a fast method
for estimating the phase from a magnitude STFT spectrogram [8].
When the hop-size is shorter than the frame length, the waveforms
in the overlapping segment of consecutive frames must be con-
sistent. This implies the fact that an STFT spectrogram is a re-
dundant representation. Thus, an STFT spectrogram must satisfy
a certain condition to ensure that it is associated with a time do-
main signal. We have referred to this condition as the consistency
condition. In [8], we have shown that the problem of estimating
the phase from a magnitude STFT spectrogram can be formulated
as the problem of optimizing the consistency criterion describing
how far an arbitrary complex array deviates from this condition.

It became clear that the deviced algorithm is equivalent to the
well-known algorithm proposed by Griffin et al., [9]. The formu-
lation derived from the concept of the spectrogram consistency has
provided a new insight into the Griffin’s algorithm, allowing us to
introduce a fast approximate algorithm and give a very intuitive
proof of the convergence of the algorithm. Since a CWT spectro-
gram is also a redundant representation of a signal [10], we may be
able to make the best use of the spectrogram consistency concept
to develop a fast approximate method for phase estimation from a
magnitude CWT spectrogram.

Following the idea proposed in [8], this paper derives an algo-
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Figure 2: Illustration of the spectrogram consistency concept for
the continuous wavelet transform (CWT).

rithm for estimating the phase from a magnitude CWT spectro-
gram. Sec. 2 formulates the phase estimation problem as an opti-
mization problem based on a consistency condition. Sec. 3 derives
an iterative algorithm for phase estimation based on an auxiliary
function approach, which turns out to be equivalent to the algo-
rithm proposed by Irino [7]. Our formulation gives a very clear
proof of the convergence of the algorithm, though it should be
noted that the proof of the convergence has already been given
in [10]. Sec. 4 describes a fast approximate method for computing
each iterative step of the proposed algorithm.

2. CWT SPECTROGRAM CONSISTENCY

2.1. Consistency condition

The scale parameter of the CWT corresponds to the period (the
reciprocal of the center frequency) of the wavelet basis function.
Here we consider discretizing the scale parameter such that the
center frequencies of the wavelet basis functions are uniformly
spaced on a log-frequency scale. Let the indices of the scale pa-
rameter and time shift parameter be denoted by l ∈ [0, L−1] and
t ∈ [0, T−1], respectively, and let the component of a CWT spec-
trogram associated with the l-th scale parameter al > 0 (hereafter,
the l-th component) be denoted by sl = [sl,0, sl,1, . . . , sl,T−1]T ∈CT .
Given a discrete-time signal f = [ f0, f1, . . . , fT−1]T ∈F where F :=
{ f ′ ∈CT ;

∑
t f ′t = 0}, its CWT spectrogram s = [sT

0 , s
T
1 , . . . , s

T
L−1]T ∈

CLT is defined as
s = W f , (1)

where W ∈ CLT×T denotes the CWT matrix, defined as

W :=


W0

W1
...

WL−1

 , Wl :=


ψl,0 ψl,1 · · · ψl,T−1

ψl,T−1 ψl,0 · · · ψl,T−2
...

. . .
...

ψl,1 ψl,2 · · · ψl,0

 . (2)

Here, ψl,t := ψ(t∆/al)/al is a scaled mother wavelet with the
scale of al and the time shift of t∆, where ∆ denotes the sam-
pling period of the time shift parameter and ψ(·) ∈ C denotes the
mother wavelet satisfying the admissibility condition. Each row of
Wl ∈ CT×T contains the wavelet basis function of scale al with a
different time shift parameter. The inverse CWT can be defined by
the pseudo-inverse of W:

f = W+s, W+ := (WHW)−1WH, (3)

where H is used to denote the Hermitian transpose. This implic-
itly means that the inverse CWT is defined as the solution to the
following minimization problem:

W+s = argmin
f̃∈F

∥s −W f̃∥22, (4)

where ∥ · ∥2 denotes the ℓ2 norm of a vector.
While the CWT spectrogram of an audio signal (i.e., a complex

vector that belongs to the subspace spanned by the column vec-
tors of W) will be mapped to itself by applying the inverse CWT
followed by the CWT, a complex vector that does not belong to
the subspace will not come back to the same point but will be pro-
jected onto the nearest point in the subspace. Thus, we can define
a condition for a complex vector to be “consistent” (in the sense
that it corresponds to a CWT spectrogram of a signal) as follows:

0LT = s −WW+s, (5)

where 0LT denotes an LT -dimensional zero vector. It is impor-
tant to note that when W is replaced with a matrix in which each
row is a basis function of the STFT, (5) becomes equivalent to the
consistency condition for an STFT spectrogram proposed in [8].

2.2. Phase estimation using spectrogram consistency

When given a magnitude CWT spectrogram a ∈ [0,∞)LT , we can
construct a signal by assigning phase ϕ ∈ [−π, π)LT to it to ob-
tain a complex spectrogram s, and applying the inverse CWT, i.e.,
W+s. Here, if we assign “inconsistent” phase to the given mag-
nitude spectrogram, the complex spectrogram s will not belong
to the signal subspace and so the spectrogram of the constructed
signal, WW+s, will be different from s. As we want to keep the
magnitude spectrogram of the constructed signal consistent with
the given magnitude spectrogram, we must find “consistent” phase
such that s satisfies the consistency condition.

2.3. Filter bank interpretation

To give a deeper insight into the consistency condition, we focus
on the filter bank interpretation of the CWT. The CWT of a signal
can be thought of as the output of a filter bank consisting of sub-
band filters whose impulse responses are given by the the scaled
mother wavelets. Now, by applying the T -point discrete Fourier
transform (DFT) to each block of (5), (5) can be written equiva-
lently as

0 = ŝ − ŴŴ+ŝ, (6)

where

Ŵ =


Ŵ0

Ŵ1
...

ŴL−1

 , Ŵl = FT WlFH
T , Ŵ+ = (ŴHŴ)−1ŴH, (7)

FT ∈ CT×T is the DFT matrix and ·̂ denotes the DFT of a variable.
Since Wl is a circulant matrix, Wl is diagonalized by FT and FH

T .
The diagonal elements of Ŵl represent the frequency response of
the l-th subband filter associated with the scale parameter al. The
k-th diagonal element of (6) is explicitly written as

0 = ŝl,k −
1

Ck

∑
l′
ψ̂l,kψ̂

∗
l′ ,k ŝl′ ,k, (8)
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where k ∈ [0, T −1] denotes the angular frequency index, Ck is a
normalization constant, and ∗ is used to denote the complex conju-
gate.

If the subbands of the filter bank overlap each other (more
precisely, if there exists a pair of channels such that the product
of their frequency responses is non-zero at every frequency), i.e.
∀k,∃l , l′, ψ̂l,kψ̂l′ ,k , 0, (5) becomes a nontrivial condition for a
complex vector s ∈ CLT to correspond to a consistent CWT spec-
trogram. Otherwise, all the elements of CLT trivially satisfy (5),
implying that the consistency condition cannot be used as a crite-
rion for phase estimation. Therefore, care must be taken in choos-
ing the quantization intervals of the scale parameter and the type
of the mother wavelet function. The Morlet [11], the log-normal
wavelet [4] and the wavelets used in the auditory wavelet trans-
form [7] satisfy the above requirement when the quantization inter-
vals of the scale parameter are appropriately chosen. We hereafter
assume to use a filter bank that satisfies ∀k,∃l , l′, ψ̂l,kψ̂l′ ,k , 0.

The requirement for the subbands of the CWT to overlap each
other is analogous to the requirement for the short time frames of
the STFT to overlap. The consistency condition of STFT spectro-
grams can be understood as implying that the waveforms within
the overlapping segment of consecutive frames must be consis-
tent [8]. The consistency condition of CWT spectrograms, on the
other hand, can be interpreted as implying that the outputs of adja-
cent channels within the overlapping subbands must be consistent.

3. PHASE ESTIMATION BASED ON CWT
SPECTROGRAM CONSISTENCY

3.1. Formulation of phase estimation problem

Assume that we are given a magnitude CWT spectrogram, ar-
ranged as a non-negative vector a ∈ [0,∞)LT . We would like
to estimate the phase of the given magnitude spectrogram such
that it meets the consistency condition. To allow for any vector
a ∈ [0,∞)LT as the input, we consider finding a phase estimate
ϕ ∈ [−π, π)LT that minimizes the consistency criterion

I(ϕ) := ∥s(a,ϕ) −WW+s(a,ϕ)∥22, (9)

where s(a,ϕ) denotes the estimated CWT spectrogram defined by

s(a,ϕ) := a ⊙


ejϕ0

ejϕ1

...
ejϕLT−1

 . (10)

⊙ denotes the element-wise product. I(ϕ) describes how far
s(a,ϕ) deviates from the consistency condition. Namely, the more
consistent s(a,ϕ) becomes, the smaller I(ϕ) becomes.

3.2. Iterative algorithm with auxiliary function approach

Unfortunately, the optimization problem of minimizing I(ϕ) with
respect to ϕ is difficult to solve analytically. However, we can
invoke the auxiliary function approach to derive an iterative algo-
rithm that searches for the estimate of ϕ, as with [8]. To apply the
auxiliary function approach to the current optimization problem,
the first step is to construct an auxiliary function I+(ϕ, s̃) satisfy-
ing I(ϕ) = mins̃ I+(ϕ, s̃). We refer to s̃ as an auxiliary variable.
It can then be shown that I(ϕ) is non-increasing under the updates
ϕ← argminϕ I+(ϕ, s̃) and s̃← argmins̃ I+(ϕ, s̃). The proof of this

Update phases

Set of CWT spectrograms
Set of discrete-
time signals

Inverse CWT

CWT

Set of complex vectors with

the given magnitude CWT spectrogram

Figure 3: Illustration of the iterative phase estimation algorithm.
The red and blue arrows correspond to (14) and (15).

shall be omitted owing to space limitations. Thus, I+(ϕ, s̃) should
be designed as a function that can be minimized analytically with
respect to ϕ and s̃. Such a function can be constructed as follows.

Recall that the operator WW+ is an orthogonal projection onto
the subspace spanned by the column vectors of W and so WW+s
indicates the closest point in the subspace from s. Thus, we can
show that

I(ϕ) =min
f̃∈F
∥s(a,ϕ) −W f̃∥22 (11)

=min
s̃∈W
∥s(a,ϕ) − s̃∥22, (12)

where W denotes the set of consistent CWT spectrograms (the
subspace spanned by the column vectors of W). Therefore, we can
confirm that

I+(ϕ, s̃) := ∥s(a,ϕ) − s̃∥22, s̃ ∈ W, (13)

satisfies I(ϕ) = mins̃∈W I+(ϕ, s̃). (13) can thus be used as
an auxiliary function for I(ϕ). We can thus monotonically de-
crease I(ϕ) by iteratively performing s̃ ← argmins̃ I+(ϕ, s̃) and
ϕ ← argminϕ I+(ϕ, s̃). Here, s̃ ← argmins̃ I+(ϕ, s̃) and ϕ ←
argminϕ I+(ϕ, s̃) can be written explicitly as

s̃←WW+s(a,ϕ), (14)
ϕ←∠s̃, (15)

respectively, where ∠ denotes an operator that gives the arguments
of the components of a complex vector as a real vector in [−π, π)LT .

(14) means applying the inverse CWT followed by the CWT
to s(a,ϕ). Here, when s(a,ϕ) is already a complex vector corre-
sponding to a consistent spectrogram, this update simply becomes
s̃ ← s(a,ϕ). (15) means replacing the phase estimate ϕ with the
phase of s̃. A schematic illustration of these updates is shown in
Fig. 3. I(ϕ) = 0 indicates that s(a,ϕ) lies in the intersection of
the set of consistent CWT spectrograms and the set of complex
vectors that are equal to a up to a phase factor.

3.3. Relation to previous work

The present algorithm is equivalent to an algorithm proposed by
Irino [7]. In addition, when W is replaced with a matrix in which
each row is a basis function of the STFT, the present algorithm
becomes equivalent to the phase estimation algorithm for a mag-
nitude STFT spectrogram proposed in [8].

DAFX-3



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 4: Example of the frequency responses of different subband
filters (i.e., the scaled mother wavelets). The mother wavelet is the
log-normal wavelet [4].
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Figure 5: A circularly shifted version of Gl,B, . . . ,Gl,B+D−1 [12].

4. FAST PHASE ESTIMATION ALGORITHM

4.1. Fast approximate continuous wavelet transform

The CWT and the inverse CWT are computationally expensive
compared to the STFT and the inverse STFT. Here we briefly de-
scribe the fast approximate method for computing CWT proposed
in [12]. The proposed fast approximate CWT uses the fact that the
dominant part of the frequency response of each subband filter is
concentrated around its center frequency (as shown in Fig. 4), as
is common in many types of mother wavelets including the Morlet
and log-normal wavelets [4].

According to the filter bank interpretation of the CWT, the
CWT of an input signal, sl = [sl,0, . . . , sl,T−1]T = Wl f , can
be computed by multiplying the DFT of the entire signal, i.e,
f̂ = [ f̂0, . . . , f̂T−1]T = FT f , by the frequency response of the l-
th subband, i.e., Ŵl = diag(ψ̂l,0, . . . , ψ̂l,T−1), and then computing
the inverse DFT of Ŵl f̂ . This can be confirmed from

sl = Wl f = FH
T FT WlFH

T FT f = FH
T Ŵl f̂ . (16)

Note that the second equality follows from the fact that the DFT
matrix FT is a unitary matrix, i.e., FH

T FT = IT . Here, if we can
assume that the elements of {ψ̂l,k}k are dominant within and near 0

outside the range k ∈ [B, B + D − 1] (0 ≤ B, 0 < D ≤ T ), we can
approximate sl reasonably well by using the elements of {ψ̂l,k f̂k}k
only within that range and neglecting the remaining elements. This
implies the possibility of computing an approximation of sl with a
lower computational cost.

For simplicity of notation, let us put Gl,k = ψ̂l,k f̂k. We are con-
cerned with computing an approximation of the full-band inverse
DFT of Gl,k:

sl,t =

T−1∑
k=0

Gl,ke j 2πkt
T . (17)

As mentioned above, Gl,0, . . . ,Gl,T−1 can be approximately viewed
as a band-limited spectrum. In general, the inverse DFT of a band-
limited spectrum can be computed by taking the inverse DFT over
the finite support. In the time domain, this process corresponds
to downsampling the signal given by the “full-band” inverse DFT.
The proposed method uses this idea to approximate the inverse
DFT of the full-band spectrum Gl,0, . . . ,Gl,T−1. Now, if we choose
D such that T/D becomes an integer, we can approximate the
downsampled version of sl,t by

s̃l,d =

B+D−1∑
k=B

Gl,ke j 2πkd
D =

B+D−1∑
k=B

Gl,ke j 2πk(T/D)d
T . (18)

By comparing (17) and (18), we can confirm that

sl,(T/D)d ≃ s̃l,d (d ∈ [0,D − 1]), (19)

if we assume Gl,k ≃ 0 outside the range k ∈ [B, B + D − 1]. Since
s̃l,d can be rewritten as

s̃l,d =

D−1∑
k=0

Gl,k+Be j( 2πk
D +2π B

D )d = e j2π B
D d

D−1∑
k=0

Gl,k+Be j 2πkd
D , (20)

we notice that s̃l,d can be computed by multiplying the inverse DFT
of Gl,B, . . . ,Gl,B+D−1 by e j2π B

D d. Note that this is equivalent to com-
puting the inverse DFT of a circularly shifted version of Gl,k (see
Fig. 5):

G̃l,k =

Gl,k+nD (k = 0, . . . , B − (n − 1)D − 1)
Gl,k+(n−1)D (k = B − (n − 1)D, . . . ,D − 1)

, (21)

where n is an integer such that

n − 1 <
B
D
≤ n. (22)

We consider invoking the fast Fourier transform (FFT) algorithm
for computing the inverse DFT and so we assume the size D to
be a power of 2. Since D < T , the computational cost for com-
puting s̃l,0, . . . , s̃l,D−1 is obviously lower than that for computing
sl,0, . . . , sl,T−1.

4.2. Fast phase estimation algorithm

The processes of bandlimiting and circular shifting can be repre-
sented by a matrix K:

K :=
[
0B0×(D−B0) IB0

ID−B0 0(D−B0)×B0

]
︸                         ︷︷                         ︸

(ii) Circular shifting

[
0D×B ID 0D×(T−D−B)

]︸                          ︷︷                          ︸
(i) Bandlimiting

(23)
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where ID and 0D×B are the D × D identity matrix and the D × B
zero matrix. The downsampled version of sl obtained with the
abovementioned fast approximate CWT can be described as

šl = FH
DKŴlFT f . (24)

Similarly to the inverse CWT, the fast approximate version of
the inverse CWT can be defined by the pseudo-inverse matrix of
FH

DKŴlFT . It is important to note that convergence of the phase
estimation algorithm in which the CWT and inverse CWT steps
are replaced with the fast approximate versions is still guaranteed.

4.3. Time and space complexity

The computational costs for the CWT and the fast approximate
CWT mainly depend on the number of the points for the inverse
DFT. Since the computational complexity of the full band inverse
DFT is O(T log2 T ), the total computational complexity of the
CWT is O(T log2 T + LT log2 T ). By contrast, the computational
complexity of the band-limited DFT is O(D log2 D) and so the total
computational complexity is O(T log2 T +

∑L−1
l=0 Dl log2 Dl).

The space complexity of the proposed algorithm is small com-
pared to Irino’s algorithm [7]. When the signal length T is long
enough, the space complexity depends primarily on the size of
the CWT spectrogram. While the size of the CWT spectrogram
of Irino’s algorithm is LT , that of the proposed algorithm is only∑

l Dl.

5. EXPERIMENTAL EVALUATIONS

5.1. First experiment: Computation time and audio quality

5.1.1. Experimental conditions

To evaluate the computation time and the audio quality of the re-
constructed signals by the phase estimation algorithms, we con-
ducted an objective experiment, and compared the proposed algo-
rithm with the Irino’s algorithm [7].

We used the magnitude CWT spectrograms of 16kHz-sampled
acoustic signals of the 113 male and 115 female speeches in the
ATR Japanese speech database A-set [13]. The FFT performs
faster for acoustic signals with a power of 2 length than those with
the other length, and the used signals were filled by 0 till each
length reached a power of 2. Phases were initialized randomly,
and both the algorithms were finished at 1000 iterations. As the
mother wavelet, we used the log-normal wavelet [4], which is de-
fined in the Fourier-transformed domain:

ψ̂(ω) :=

exp
(
− (logω)2

4σ2

)
(ω > 0)

0 (ω ≥ 0)
(25)

where ω is an angular frequency and σ is a standard deviation. σ
was set at 0.02 and the analysis frequencies ranged 27.5 to 7040 Hz
with 20 cents interval (i.e. uniform interval in the log-frequency
domain). In the proposed algorithm, we computed the elements
within ±3σ around the central frequencies in the log-frequency
domain. The used computer had the Intel Xeon CPU E31245 (3.3
GHz) and a 32 GB RAM.

We employed the perceptual evaluation of speech quality
(PESQ) [14] as the evaluation measure for audio quality, which is
the world-standard objective evaluation measure for speech qual-
ity. It ranges −0.5 to 4.5 and speech quality is higher as the PESQ
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Figure 6: The averaged computation time per iteration with stan-
dard errors with respect to various signal lengths.

becomes larger. As an evaluation measure of the computation
speed, the computation time per iteration was used.

5.1.2. Results

The averaged PESQ with standard errors were 4.20 ± 0.08 for the
Irino’s algorithm and 4.1 ± 0.1 for the proposed algorithm. The
result indicates that the speech qualities of the reconstructed sig-
nals were high enough for practical use. The difference between
the Irino’s and proposed algorithms was negligible practically1.

Fig. 6 shows the results for the computation speed with respect
to the signal length, since the computational complexity of the al-
gorithms primarily depends on the signal length. The proposed
algorithm was around 100 times faster than the Irino’s algorithm
in the computation time. For example, the averaged computation
time per iteration by the Irino’s algorithm was around 10 s/iteration
for the 15 s signal. In contrast, that by the proposed algorithm was
around 0.1 s/iteration.

5.2. Second experiment: Relation between approximation ac-
curacy and audio quality

5.2.1. Experimental conditions

The proposed algorithm includes the approximation, and we next
evaluated the relation between the approximation accuracy and the
audio quality of the reconstructed signals. We used the 5 s from
30 s of 102 music audio files with 16 kHz sampling frequency in
the RWC music genre database [15]. As the mother wavelet, the
log-normal wavelet with σ = 0.02 was chosen. The approxima-
tion accuracy of the proposed algorithm corresponds to the calcu-
lated range by the downsampling step, and we used the elements
within ±Pσ (P = 1, 2, 3, 5) around the central frequencies in the
log-frequency domain. The number of iterations was set at 500 for
the proposed algorithm and at 100 for the Irino’s algorithm. The
used computer had the Intel Core i3-2120 CPU (3.30 GHz) and a
8 GB RAM. The other experimental conditions were the same as
in Sec. 5.1.1.

An evaluation measure for audio quality was the objective dif-
ferential grade (ODG) by the perceptual evaluation of audio qual-

1Audio samples are available at http://hil.t.u-tokyo.ac.
jp/~nakamura/demo/fastCWT.html.
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Figure 7: Evolution of the averaged objective difference grades
with standard errors by perceptual evaluation of audio quality with
respect to the number of iterations for the proposed algorithms
with various approximations ([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the
Irino’s algorithm [7].
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Figure 8: Evolution of the objective difference grades by per-
ceptual evaluation of audio quality with respect to the computa-
tion time for the proposed algorithms with various approximations
([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the Irino’s algorithm [7].

ity (PEAQ) [16]. It ranges −4 to 0, and the acoustic quality is
higher as the ODG becomes larger.

5.2.2. Results

Fig. 7 illustrates the averaged ODGs with standard errors. The
ODGs by the proposed algorithms with P = 3, 5 were larger than
−2.0 after 100 iterations, and the results for P = 3, 5 shows high
audio quality2. The results does not significantly differ from that
by the Irino’s algorithm in audio quality. We can thus say that the
proposed algorithm with around P ≥ 3 reconstructs the acoustic
signals with almost the same audio quality as the Irino’s algorithm.

In a viewpoint of the computation speed, the computation time
becomes shorter as P is smaller. Fig. 8 shows the result for one of
the acoustic signals (RWC-MDB-G-2001 No. 1), and the ODGs
by the proposed algorithms quickly become higher than those by

2c.f.) When the used audio signals were converted into MPEG-3 files
with 160 kbps, the averaged ODGs with standard errors were −3.68±0.03.
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Figure 9: Evolution of the perceptual evaluation of speech quality
and the computation time with respect to the proposed algorithms
with various approximations ([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the
Irino’s algorithm [7].

the Irino’s algorithm. The similar result for the speech signal
(fafsc110 in the ATR Japanese speech database A-set [13], the 7
s signal) was shown in Fig. 9. Therefore, we conclude that the
proposed algorithm with around P = 3 provides the reconstructed
signals with high audio quality in a reasonable computation time.

5.3. Demonstration of phase estimation

We demonstrate pitch transposition of acoustic signals to confirm
effectiveness of the proposed algorithm for sound manipulation.
When the analysis frequencies are located uniformly in the log-
frequency domain and D0 = D1 = · · · = DL−1 in the proposed
algorithm, we simply shift the components of the CWT spectro-
grams to the lower or higher analysis frequency components, and
the blank components by the move are filled by zero. However, the
shifts cause the mismatches of phases, and the use of the original
and zero phases leads to failure of the pitch transposition, hence
we need to use the phase estimation for synthesizing the pitch-
transposed acoustic signals. By the proposed algorithm, we ob-
tained the synthesized signals 3 as we expected.

6. CONCLUSION

We have proposed a fast and convergence-guaranteed algorithm of
the phase estimation by using the fast approximate CWT [12]. The
phase estimation problem has been formulated based on the con-
sistency condition, and the iterative algorithm has been derived by
applying the auxiliary function method, which is the same as the
Irino’s algorithm [7]. Furthermore, we show the requirement on
scale factors and mother wavelets for the phase estimation by using
the consistency condition. The experimental results have shown
that the proposed algorithm was about 100 times faster than the
algorithm provided in [7]. The audio quality of the reconstructed
signals for music and speech data was high enough for practical
use, and the difference between the results by the proposed algo-
rithm and the algorithm provided in [7] was negligible.

3The synthesized signals are available at http://hil.t.
u-tokyo.ac.jp/~nakamura/demo/fastCWT.html.
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We plan to combine the phase estimation with source separa-
tions for magnitude CWT spectrograms for music acoustic signal
manipulation such as conversions of chords, keys and scales. To
increase convenience, developing the online version of the pro-
posed algorithm is important.
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