
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

DECLARATIVELY PROGRAMMABLE ULTRA LOW-LATENCY AUDIO EFFECTS
PROCESSING ON FPGA

Math Verstraelen, Jan Kuper, Gerard J.M. Smit

Computer Architecture for Embedded Systems
University of Twente

Zilverling 4078, P.O. Box 217, 7500 AE Enschede, the Netherlands
Email:{M.J.W.Verstraelen,G.J.M.Smit,J.Kuper}@utwente.nl

ABSTRACT

WaveCore is a coarse-grained reconfigurable processor architec-
ture, based on data-flow principles. The processor architecture
consists of a scalable and interconnected cluster of Processing Units
(PU), where each PU embodies a small floating-point RISC pro-
cessor. The processor has been designed in technology-independent
VHDL and mapped on a commercially available FPGA devel-
opment platform. The programming methodology is declarative,
and optimized to the application domain of audio and acoustical
modeling. A benchmark demonstrator algorithm (guitar-model,
comprehensive effects-gear box, and distortion/cabinet model) has
been developed and applied to the WaveCore development plat-
form. The demonstrator algorithm proved that WaveCore is very
well suited for efficient modeling of complex audio/acoustical al-
gorithms with negligible latency and virtually zero jitter. An ex-
perimental Faust-to-WaveCore compiler has shown the feasibility
of automated compilation of Faust code to the WaveCore proces-
sor target.

Keywords: ultra-low latency, zero-jitter, coarse-grained recon-
figurable computing, declarative programming, automated many-
core compilation, Faust-compatible, massively-parallel

1. INTRODUCTION

Modeling of physical/acoustical phenomena as a methodology to
build electronic musical instruments has become increasingly pop-
ular since digital electronics became sufficiently powerful and cost-
effective. Nowadays these models are often the mathematical core
of products like synthesizers or sound effects gear (e.g. guitar-
effects). Moreover, such physical models are increasingly being
used during the development of acoustical music instruments [1],
or used within hybrid musical instruments (like the hybrid piano).
The General-Purpose Processor (GPP) in stand-alone computer
systems, or in its embedded form in tablet computers or smart-
phones, has steadilly gained processing capacity during the past
years. This has resulted in the fact that the GPP is often used as
audio processing device. Consequently, audio/acoustical models
are usually developed with a C-based approach. A few disadvan-
tages of the application of the GPP are varying/unpredictable/long
latency in the processing chain, the high power consumption and a
limited processing capacity which limits the applicability of a GPP
for complex physical modeling. Other processor technologies, like
Field-Programmable Gate Arrays (FPGA), are an alternative for
these types of complex modeling problems.

2. SCOPE OF THE WORK AND RELATED PROBLEMS

The scope of our work is to develop scalable (i.e. parallel com-
puting) and low-latency processor technologies within the domain
of physical modeling. State-of-the art GPP processor architec-
tures are multi-core based. It is however a difficult task to ex-
ploit full parallelism, because it is not trivial to compile a conven-
tional C-based program to a multi-core platform. Likewise, the
usually shared and cached memory hierarchy adds another com-
plexity level (data coherency among parallel processes, variable
latencies and performance penalty when moving data between pro-
cessors through a unified cached memory hierarchy). FPGAs are
often used when low-latency and high-performance are crucial re-
quirements. FPGAs offer flexibility and can be designed such that
they offer the exactly required performance. However, creating an
FPGA design is a specialistic task and differs from software design
in many aspects. Moreover, FPGAs are not by definition flexible
in the sense that the functionality can be changed easily/rapidly.
As a result, an FPGA design is usually heavily optimized towards
a specific task. In the field of physical modeling an example is a
physical/acoustical model of a banjo instrument, based on Finite
Difference Modeling [1]. Coarse-grained reconfigurable architec-
tures (CGRA) aim to address the programmability problem of the
bit-level configurable FPGA. CGRAs are usually based on regular
matrices of configurable Processing Units (PUs). Usually a data-
flow graph is mapped on a CGRA where the arithmetic functions
map on the PUs and the communication on the interconnect net-
work of such an architecture.

3. MAIN CONTRIBUTIONS

We have developed a CGRA, called WaveCore [2]. The WaveCore
architecture is declaratively programmable through an explicit de-
scription of an algorithm in the form of a data-flow network. This
data-flow network is automatically partitioned and mapped on the
WaveCore architecture. The semantics of a WaveCore data-flow
graph are conceptually close to properties of functional program-
ming languages, like Faust [3]. Therefore, compilation of an al-
gorithm which is described in a functional language towards a
WaveCore data-flow graph is feasible. The WaveCore architec-
ture is implemented as a softcore, which can be either mapped on
FPGA or ASIC (Application Specific Integrated Circuit) technol-
ogy. The scalability of the regular architecture, combined with the
declarative and scalable programming methodology, results in the
ability of automated partitioning and mapping of a data-flow graph
on the architecture. A mapped algorithm behaves fully predictable,
which means that stream buffering can be kept to a minimum. This

DAFX-1

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

results in ultra-low processing latency. The WaveCore processor
technology is optimized to characteristics which are dominant in
physical modeling of audio systems (e.g. delay-lines). In this pa-
per we will first focus on the WaveCore architecture, related to the
programming methodology. Then we will explain how two exam-
ple audio effects (flanger and auto-wah) are described and mapped
on the WaveCore processor architecture, and how a reverberation
effect which is described in Faust [3] can be automatically com-
piled to WaveCore. Next we will present a benchmark modeling
algorithm, and highlight the efficiency. Finally we draw some con-
clusions and we give some directions to future work.

4. WAVECORE PROCESSOR TECHNOLOGY

Like we mentioned, WaveCore is a CGRA. This architecture con-
sists of a cluster of interconnected Processing Units (PU). These
PUs are small RISC (Reduced Instruction Set Computer) proces-
sors with a dedicated instruction-set which is specifically opti-
mized towards audio/acoustical modeling. The WaveCore pro-
gramming methodology is based on a native WaveCore program-
ming language, and based on a declarative description of a hier-
archical network of processing primitives. Despite the fact that
the WaveCore language is native, the structure of the language
matches closely with existing functional languages, like Faust [3].
The WaveCore processor architecture is implemented as a technol-
ogy independent and configurable soft-core (VHDL), which as a
prototype has been targeted to a commercially available FPGA de-
velopment platform (Digilent Atlys, [4]). A WaveCore cluster and
associated mapping tool can be automatically generated. In the fol-
lowing sections we will first outline the WaveCore programming
methodology, followed by the associated WaveCore PU cluster ar-
chitecture.

4.1. Programming model

The WaveCore programming model is based on explicit descrip-
tion of a data-flow-graph in a declarative manner. An example of
such a graph is depicted in fig. 1. At top-level the graph consists
of one or more ’actors’ (i.e. processes) which are interconnected
by means of ’edges’. An actor can have multiple inbound (i.e. in-
put) and outbound (i.e. output) edges. Data is carried across the
edges, where a data-packet is called a token. Each edge is asso-
ciated with a predefined token-type. For example: an edge might
represent a stereo audio channel, carrying tokens which consist of
two floating-point numbers at a token rate of 48kHz. Each edge
in the graph has a programmable token buffering capability. The
example graph in fig. 1 represents an audio processing application.
This application is controlled by an actor called "run-time control
actor". This actor might run on a host processor and communi-
cates with a WaveCore actor (which we call a WaveCore Process
(WP)) through control edge E2. This edge E2 carries control to-
kens which represent for instance audio effects settings, like phas-
ing depth. The "audio interface actor" within the example appli-
cation graph represents an intermediate process between an audio
codec (e.g. AC97 device) and the WP. This audio interface actor
communicates with the WP through two edges: E1 which carries
the input tokens(s) to the WP and E2 which carries the processed
WP output tokens. The actual signal processing algorithm runs on
two example WPs, called WP1 and WP2. WP1 on its turn consists
of two WP-partitions WP1.a and WP1.b. Ultimately the WP, or
WP-partition is composed of "primitive actors" (PA). As such, the

Figure 1: Data-flow graph

PA is the algorithmic primitive within the declarative WaveCore
programming methodology. The PA is defined in the next subsec-
tion. Each actor in the graph is executed (i.e. fired) periodically,
where each actor might be fired with a different (through coher-
ently related) frequency. Within WaveCore, we chose to apply a
centralized scheduler which orchestrates the firing of all the actors
in the graph. The reason that we chose for this scheduling princi-
ple, rather than a purely data-flow driven schedule which is more
common in data-flow architectures, is that a centralized schedul-
ing principle yields a fully predictable and jitter-free execution of
the overall graph. As a result, large closed-loop graphs with a rel-
ative large number of actors still yield a fully predictable overall
execution when applying this centralized scheduler principle.

4.1.1. Primitive Actor

Like explained, the Primitive Actor (PA) is the basic processing
element in the WaveCore programming methodology. The PA
is depicted in fig. 2. The definition of the PA is based on fun-
damental discrete-time audio processing characteristics. Besides
the common basic mathematical operations like addition, subtrac-
tion, multiplication, etc. a dominant property is the delay function.
Delay-lines are dominantly present in many audio and acoustical
modeling algorithms [5], like reverberation, string modeling etc.
Furthermore, dynamic delay-line length variation is an additional
basic property which is also present in many modeling phenom-
ena (like Doppler shifting, or multi-path interference with time-
modulated path-length such as "flanging"). The WaveCore PA is
depicted in fig. 2. The PA has at most two inbound edges x1[n] and

Figure 2: WaveCore Primitive Actor (PA)

x2[n] and one outbound edge y[n + λ]. There are different types
of PAs which are indicated with the function identifier f (see ta-
ble 1) A number of PAs (like the MUL-type PA) need a parameter
p. Each PA is associated with an optional delay-line which is au-
tomatically inferred when the delay-line length Λ is greater than
zero. The effective length λ of the delay-line can be run-time var-

DAFX-2

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

ied with the inbound edge τ [n] according to the following relation:

1 < λ[n] < Λ (1)

According to:
λ[n+ 1] = ⌊Λ.(τ [n]− 1)⌋ (2)

With:
1 < τ [n] < 2 (3)

The programmer should take care that τ [n] is bounded within the
specified range. Hence, the behavior is not specified outside the
specified range.

Table 1: PA types

PA type Mnem Function
Adder ADD y[n+ λ] = x1[n] + x2[n]
Comparator CMP y[n+ λ] == (x1[n] > x2[n])
Divider DIV y[n+ λ] = x1[n]/x2[n]
Logic funct. LGF y[n+ λ] = LogFunc(x1[n], x2[n], p)
Look-up LUT y[n+ λ] = Lookup[⌊Scale(x1[n])⌋]
Multiplier MUL y[n+ λ] = x1[n].x2[n]
Mul/Add MAD y[n+ λ] = p.x1[n].x2[n]
Amplifier AMP y[n+ λ] = p.x1[n]
Noise Gen RND y[n]=p.rnd < 0 : 1 >

4.2. Processor architecture

The block diagram of an embedded WaveCore PU cluster instance
is depicted in fig. 3. The cluster in fig. 3 consists of 5 inter-
connected PUs, and a shared local memory. Each PU represents
a small IEEE754 compliant single-precision floating-point based
RISC processor. The PU is optimized to sequentially fire all PAs
in a WP-partition. If a WP is partitioned into two or more WP-
partitions, then the data which is associated to the graph-cut(s) is
streamed over the PU interconnect network which is called the
GPN (Graph Partition Network). The memory hierarchy spans
three levels and does not contain any caching. Level1 implies
PU-proprietary tightly coupled memory within each PU instance.
Level1 memory is used for in-place execution of WPs or WP-
partitions (scratch memory and storage of state-variables) Level2
embodies a shared PU cluster memory. Level3 memory is located
outside the PU cluster and is usually an off-chip bulk memory like
DDR. WP token data buffer space is either allocated in Level2 (for
spatially close WPs), or Level3 memory. Delay-line buffer space is
also mapped onto Level2 or Level3 memory. The memory hierar-
chy has been designed in such a way that the locality of reference
principle is maximally utilized. This implies that the data-traffic
between the levels is kept to a minimum. The instruction set of the
PU is optimized in such a way that it is enabled to fire a PA within a
single instruction, including all the necessary memory references,
pointer updates, arithmetic operations etc. Moreover, special mea-
sures have been taken to hide Level2/Level3 memory latency for
the PU.

Like we mentioned in the introduction, all the actors in the data-
flow graph are fired by means of a centralized scheduler. This
means that all the PUs in the cluster are triggered by this central-
ized scheduler. The overall PU cluster architecture has been de-
signed in such a way that the real-time constraints are always met.

The cluster can be initialized through the "Host Processor Inter-
face" (HPI), which provides access to instruction memory, data
memory and registers for all the embedded PUs. Similarly, the
HPI is used for run-time control of the WaveCore application.
Run-time application control can either be performed by direct PU
level1 memory write-access, or via control tokens through Level3
memory.

4.3. WaveCore FPGA development platform

We have generated an optimized WaveCore PU cluster for a com-
mercially available Digilent Atlys FPGA platform. The heart of
this platform is a Xilinx Spartan6 LX45 FPGA. The platform con-
tains a rich variety of interfaces (USB, audio, HDMI, etc.) and
memory. The WaveCore/Atlys architecture is depicted in fig. 3.
This architecture uses the on-board AC97 codec, obviously the
FPGA, the USB interface and DDR2 memory. The generated
WaveCore PU cluster consists of 5 PUs and 16kByte Level2 mem-
ory.

The feasible clock frequency for the PUs is largely dependent on
the target technology, in this case the Spartan6 LX45 FPGA. For
this typical device we obtained a PU clock frequency of 86MHz
(which equals 1792 times the programmed AC97 audio rate of
48kHz). Given the fact that a PU can execute a PA within a single
instruction and it is a fully pipelined RISC processor architecture,
this yields a processing capacity of 1792 PAs per audio sampling
period per PU at 48kHz audio rate. Hence, the PU cluster on the
Atlys board has a total processing capacity of 8960 PAs. This is
equivalent to 860 MFLOPs sustained performance.

The PU cluster is embedded in a FPGA SoC (System on Chip)
topology, as can be seen in fig. 3. The cluster has its own dedicated
port to the embedded DDR2 controller, which provides access to
the 128MByte DDR2 memory (level3 memory). The AC97 codec
chip on the Atlys board streams directly into the DDR2 memory
through the "Stream Actor" within the "Digital Audio Interface"
on the FPGA. The system is controlled through the USB interface.
Hence the host processor is supposed to be an external device like
a notebook, smartphone (through BT), etc. The host processor is
enabled to initialize/reconfigure the PU cluster and to control the
application at run-time (e.g. virtual knobs).

Mapping of the example data-flow graph in fig. 1 onto the WaveCore
PU-cluster in fig. 3 is straightforward. The "Run-time Control
Actor" runs on the host computer (e.g. notebook). This control
process can either pass control tokens into a dedicated buffer in
DDR2 memory (represented by E2, see fig. 1), or directly write
into PU level1 memories. The "Audio Interface Actor" runs on the
FPGA as a hardwired process. This actor is basically a DMA con-
troller which moves audio samples from the AC97 ADC (Analog
to Digital Converter) to a dedicated token buffer in DDR2 mem-
ory, and audio samples from token buffer in DDR2 memory to the
AC97 DAC (Digital to Analog Converter). The AC97 codec can
be initialized by the host processor through USB. The actual pro-
cessing is performed by the example WP1 and WP2 actors which
are mapped on the WaveCore PU cluster. The number of occu-
pied PUs within the cluster depends on the complexity of the WPs
(number of PAs). It might be the case that WP1.a, WP1.b and
WP2 run on three PUs, but these three WP(partitions) might also
be mapped on a single PU if these are sufficiently small. The token

DAFX-3

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 3: WaveCore development platform architecture

buffering for E3 is mapped on the locally embedded level2 mem-
ory within the cluster. Scheduling/firing of the actors is driven by
the AC97 codec, which dictates the token frequency. The sched-
uler is embedded in the "Audio Interface Actor" and periodically
fires the "Streaming Actor" and mapped WPs on the PU cluster
through the HPI interface. Note that the "Run-time Control Actor"
typically fires only incidentally, or at least at a rate which is far
lower than the audio token rate of 48kHz.

4.4. FPGA mapping

The WaveCore SoC design (PU-cluster and infrastructure) in fig. 3
is mapped on the Xilinx LX45 FPGA on the Atlys board. The
WaveCore PU cluster contains 5 PUs, where each PU is dimen-
sioned to execute WP-partitions with up to 2048 PAs. The PU
clock frequency is derived from the AC97 audio clock by an on-
chip PLL (Phase Locked Loop). Each PU uses 120kByte level1
memory. The level2 memory is configured to 16kByte. This WaveCore
configuration requires 21% of the slice registers, 68% of the slice
LUTs, 75% of the block-RAMs, and 51% of the DSP48 units on
the FPGA. The mapping floorplan is displayed in fig. 4. Each color
in the floorplan represents a WaveCore PU.

4.5. Latency, jitter and buffering

Latency, jitter and sample buffering are closely related. Jitter is
usually caused by unpredictable execution behavior. This unpre-
dictability can be caused by several factors like cache-misses, in-
terrupts, unpredictable round-trip delay times for shared memory
read transactions or other process stalls due to shared resource
conflicts. For an audio application it is unacceptable to stall the
production of output samples, or to skip output samples in case
of a stalled process. To prevent this, buffering is usually applied.
The required buffering depth is directly related to the worst-case
stall time of the processing device. Buffering however has the dis-
advantage that it introduces processing latency. This latency is

Figure 4: Xilinx LX45 FPGA floorplan for WaveCore PU cluster

critical in systems where part of the application runs on the pro-
cessing system, and the other part communicates with the system
in a closed-loop (e.g. the hybrid piano, or real-time guitar effects
processing).
The processing latency within the WaveCore architecture can be as
short as a few audio sampling periods (below 100 µsec @ 48kHz
sampling rate). The actual processing latency depends on the to-
ken buffer sizes (number of tokens within an edge channel) and the
nature of the processing algorithm which runs on the PU cluster.
This latency can be that short because of the real-time guaranteed,
fully predictable and jitter free execution of the overall WaveCore
processing chain. Jitter-free execution is a direct result of the strict
process-firing mechanism on the one hand, and guaranteed execu-
tion of WP (or WP-partitions) on the other hand. Moreover, the
carefully designed memory hierarchy results in a modest load on
the externally shared level2 and level3 memory resources. Finally,
the static and fully predictable processing schedule prevents the
need for extensive buffering.

DAFX-4

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

5. AUDIO EFFECTS IN WAVECORE TECHNOLOGY

Like we explained, a WP (or WP-partition) consists of a network
of interconnected PA instances. Furthermore, the available PA
types enable both arithmetic as well as logical/control functional-
ity. The abstraction level of a WaveCore WP matches closely with
the level at which DSP functions at block diagram level are often
specified. We will demonstrate this with two example audio effects
algorithms, described in WaveCore: the ’Flanger’ and ’Auto-Wah’
sound effect algorithms. Additionally, we will show the results of
an experimental compilation from the functional audio description
language Faust to a WaveCore WP through an example algorithm:
the ’Zita-Rev1’ reverberator.

5.1. Flanger

The flanger audio effect is widely used within several musical in-
struments. The effect is based on the principle of varying multi-
path acoustical wave interference. In this subsection we will focus
on a WaveCore model of a flanger [5]. The core of the flanger
algorithm is a delay-line which length is modulated by a Low-
Frequency Oscillator (LFO). The acoustical input signal is split:
one path goes through the modulated-length delay-line (path1) and
the other travels without delay (path2). Subsequently, the path1
and path2 signals are added, yielding the output signal y[n]. The
mentioned interference when varying delay-length(s) are applied
yields the typical flanger effect.

The block diagram of the flanger is depicted in fig. 5. The

Figure 5: Flanger WaveCore process

flanger implementation consists of two WaveCore WP-partitions.
The right WP-partition of the block diagram represents the core of
the flanger. Those parts of the block diagram which are bounded
by the round-edge boxes represent PAs (e.g. the adder and associ-
ated delay-line with input x[n] is one PA). The primary input sig-
nal x[n] is added to a delayed and scaled copy of the input signal
α.x[n− λ], while a fraction β of the delay-line output is fed-back
to the input of the delay-line. The actual multi-path interference
takes place at the output adder where x[n] is added to the delay-
line output. The feedback-path, where a fraction of the delay-line
output is fed back into the input of the delay-line, intensifies the
effect.

In our next analysis, where we will show that the flanger core is
a variant of a comb-filter, we assume λ to be constant. The dif-
ference equations for the upper-part of the flanger-core (within the
ellipse) are given in equations 4 and 5 .

p[n] = x[n] + β.p[n− λ] (4)

And
y[n] = x[n] + α.p[n− λ] (5)

With:
λ[n+ 1] = ⌊M.(τ [n]− 1)⌋ (6)

After applying the z-transformation to the difference equations
and merging the transformed equations, we find the transfer func-
tion in the z domain which is defined in equation 7

H(z) =
Y (z)

X(z)
=

1 + (α− β)z−λ

1− β.z−λ
(7)

In order to analyze the magnitude response of the flanger-core, we
replace z by ejθ , and subsequently derive the magnitude response
which is defined in equation 8.

|H(ejθ)| =

√
1 + (α− β)2 + 2(α− β)cos(λθ)

1 + β2 − 2βcos(λθ)
(8)

The magnitude response of the comb filter reveals a number of
equidistant peaks and notches. The location of the peaks in the
magnitude response of the comb-filter follows from equation 8,
and is as defined in equation 9.

θ
(p)
k = k

2π

λ
, k = 0, 1, 2, · · · , λ− 1 (9)

So, the number of equidistant notches and peaks in the magnitude
response of the comb-filter is equal to λ and is proportional to τ [n].
The effect of the feedback path with the res amplifier is that the
peaks in the magnitude response get smaller and intenser for high
res values, which also follows from equation 8.

The delay-line length λ is modulated by the left-part of the block
diagram in fig. 5: the LFO WP-partition. This LFO generates an
approximated sine-wave with a sub-Hz frequency, which is deter-
mined by the rate parameter. The core of the LFO is an inte-
grator with a hysteresis-PA in its feedback path, as is depicted in
fig. 5. The hysteresis-PA switches symmetrically between -1 and
1 (the output of the hysteresis-PA toggles between 0 and 1), which
equals the amplitude of the generated triangular wave ytr[n]. The
multipliers and adder with input ytr[n] implement a third-order
polynomial, as in equation 10

ysn[n] = 1.5ytr[n]− 0.5ytr[n]3 (10)

This polynomial shapes the triangular waveform into an approx-
imated sine-wave ysn[n]. The amplitude of ysn[n] is attenuated
with the parameter excursion, and an offset tau is added. Finally,
the resulting signal (which oscillates within range 1 < τ < 2) is
used to modulate the delay-line length, according to equation 2.
Note that we did not take fractional delay-line length interpolation
into account (to suppress "zipper-noise" due to the discrete-length
model of the delay-line).

The overall behavior of the flanger is represented by the spectro-
gram in fig. 6. This spectrogram is a representation of the WaveCore
simulation of the flanger model, with an impulse-train as input sig-
nal.

The WaveCore implementation of the flanger is a netlist represen-
tation of the block diagram in fig. 5. The applied PAs in this figure
are indicated by the round-edge rectangular boxes. The parameter

DAFX-5

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 6: Magnitude response spectrogram of flanger algorithm

inputs (rate, res, excursion,manual and depth) are run-time
controllable, similar to the control knobs on a physical flanger de-
vice. As can be seen in fig. 5 the flanger implementation requires
16 WaveCore PAs, which implies less than 1% of the processing
capacity of a single PU. The required minimum clock frequency
for this application is 2.4 MHz. The PU memory requirement is
176 bytes. The processing latency of the flanger is zero, since the
shortest path from x[n] to y[n] does not contain delay-elements.
This implies that the overall flanger latency equals the latency in
the AC97 codec, plus one additional sampling period for token
buffering.

5.2. Auto-Wah

Similar to the flanger, the ’WahWah’ audio effect is also widely
used in several electronic musical instruments. The name reveals
its sound effect. This sound effect is based on a bandpass filter
with center frequency ω0 and quality-factor Q, where the center
frequency marks the middle of the pass-band and quality-factor
determines the bandwidth of the pass-band. The center-frequency
is dynamically varied within the WahWah effect. This can be done
in various ways (e.g. expression pedal or controlled by input sig-
nal properties like envelope). In our example we chose an enve-
lope controlled WahWah, which is sometimes referred to as ’Auto-
Wah’. The continuous-time transfer function for a second order
bandpass filter with ω0 and Q parameters is defined in equation
11.

H(s) =
(1
Q.ω0

).s2

(1
ω2
0
).s2 + (1

Q.ω0
).s+ 1

(11)

We need to translate the continuous-time transfer function to its
discrete-time counterpart. For this purpose we use the bilinear
transformation, which substitutes s with z, according to the sub-
stitution rule in equation 12.

s← 2

Ts
.
z − 1

z + 1
(12)

With Ts the sampling period. Application of the bilinear trans-
formation yields the discrete-time transfer function H(z) in equa-
tion 13, which embodies the required bandpass filter behavior with
ω0 and Q parameters.

H(z) =
a(1− z−2)

(a+ b+ 1) + 2(1− b)z−1 + (1− a+ b)z−2
(13)

With:
a =

2

Q.ω0.Ts
and b =

4

T 2
s .ω

2
0

(14)

The final step is to correlate the coefficients in the derived transfer
function H(z) with the coefficients in the general second order
discrete-time transfer function, which is defined in equation 15.

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(15)

The relation between the system parameters in transfer function in
equation 13 and the parameters in the generic second order transfer
function in equation 15 is defined in equations 16,17 and 18.

b0 =
a

d
, b1 = 0 , b2 =

−a
d

(16)

And:

a1 =
2(1− b)

d
, a2 =

1− a+ b

d
, (17)

With:
d = a+ b+ 1 (18)

We map the generic transfer function in equation 15 on a direct-
form II structure. This structure is depicted in the "DF2-IIR" WP-
partition in fig. 7. The transfer function in equation 15, and associ-
ated parameters in equations 16, 17 and 18 apply to this DF2-IIR
structure (note that the parameter b1 equals zero, and therefore
is left out). The recipe for computing the coefficients b0, b2, a1

Figure 7: AutoWah WaveCore process

and a2 from equations 16,17 and 18 is implemented in the WP-
partition called "Coefficient Computation" (obviously with inputs
ω0 and Q). The "Env-Follower" WP-partition in fig. 7 detects the
envelope of the input signal x[n] and uses this envelope to com-
pute the center frequency ω0. Envelope detection is implemented
by squaring the input signal, followed by lowpass filtering. The en-
velope signal is scaled and subsequently determines the frequency
of the LFO (same LFO as used in the flanger in fig. 5). The sine
wave shaped output of the LFO is scaled with the swing parame-
ter and added to the offset freq, and finally fed to the "Coefficient
Computation" WP-partition.

The AutoWah WP requires 46 WaveCore PAs. This implies 2.2%
of the processing capacity of a single PU. The AutoWah applica-
tion requires a minimum clock frequency of 2.5 MHz. The PU
memory requirement for the AutoWah is 368 bytes. The process-
ing latency of the AutoWah algorithm is zero, since the shortest
path from x[n] to y[n] does not contain delay-elements.

DAFX-6

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

5.3. Automated compilation from Faust to WaveCore

In the third mapping example we focus on the WaveCore pro-
gramming language compatibility with Faust [3]. Faust stands
for Functional AUdio STream, and is a functional language de-
signed for audio processing. The Faust compiler produces C++
code, specifically targeted to a C++ signal processor class. The
Faust compiler can also produce a graph representation of the data-
flow network which is extracted from the Faust language descrip-
tion. Typically an algorithm which is described in Faust consists
of a data-flow process which is intended to run at real-time audio
rate, and a control part which intends to implement the run-time
control (e.g. sliders, knobs, etc.). We have developed an experi-
mental compiler which maps the Faust graph representation onto a
WaveCore process. This compiler writes a WP netlist description
which subsequently can be compiled to WaveCore object code by
the WaveCore mapping tool. We used the Faust implementation of
a stereo variant of the Zita-Rev1 [6] reverberator to show the fea-
sibility of WaveCore code generation from Faust. The Zita-Rev1
algorithm has been converted to WaveCore in a fully automated
way.

The compiled Zita-Rev1 WP requires 284 WaveCore PAs, where
30 of these PAs infer delay-lines. This implies 12% of the process-
ing capacity of a single PU. The Zita-Rev1 application requires a
minimum clock frequency of 22 MHz. The PU memory require-
ment for Zita-Rev1 is 2608 bytes. The processing latency of the
compiled Zita-rev1 Faust algorithm is zero since the shortest path
from input x[n] to output y[n] does not contain delay-elements.

6. EVALUATION

We have developed a benchmark WaveCore algorithm set, which
implements a combination of guitar effects processing and digital
wave synthesis. This benchmark represents a guitar model (con-
trolled by a console), a guitar-effects gear box and a model of dis-
tortion and speaker cabinet. The block diagram of this benchmark
is depicted in fig. 8. The complete model is encoded in one com-
posed WaveCore process which breaks down into four hierarchi-
cally built WP-partitions.

The first WP-partition in the chain instantiates 6 guitar string mod-
els. For a guitar string model we use a DWG (Digital Wave Guide)
model, based on the Karplus-Strong algorithm [7]. Each string in
the 6-string model can be tuned at run-time by a process which
runs at the host computer. Moreover, plucking each individual
string as well as adding damping characteristics (controlling the
timbre of each individual string) can be controlled at run-time.
Hence, a high level of "player" control is enabled by the model:
like string bending, playing chords, artificial finger-picking etc.

The second WP-partition in the chain implements an acoustical
model of a guitar body. The implementation of this model is based
on a 1700-taps FIR filter. The six-string model, added with the
acoustical guitar body model forms a digital model of a guitar: the
"digitar".

The third WP-partition implements the effects gear-box. This is
a model of a multi-effects rack. The digitized AC97 input sig-
nal is added to the "digitar" at the input of the gear model, and
subsequently fed to the effects models in the rack. This enables

to plug-in a real guitar into the analog input of the FPGA board.
The effects in the rack are a 12-stage envelope Phaser, the "Zita-
Rev1" reverberator 1 [6], the Auto-Wah, the Tremolo effect, and
the flanger. The outputs of the individual effects are scaled and
mixed with the unprocessed (i.e. "dry") signal which is fed through
the "Bypass" unit. The effects in the gear-box, as well as the scal-
ing/mixing is controlled at run-time by a process which runs on
the host computer.

The fourth WP-partition implements a distortion model which is
based an the BOSS DS1 distortion pedal [8], a speaker cabinet
model and stereo rendering. The signal which is fed through the
DS1 model is scaled and added with a scaled "dry" signal (through
the "Bypass" unit). The output of the added signal is fed through
a 1700-taps FIR filter which represents an acoustical model of a
speaker cabinet. Finally, the output of the cabinet model is routed
to the "left" channel output of the AC97 codec, and a delayed
copy of this signal ("right") is routed to the "right" channel of the
AC97 codec. The parameters for the DS1, the dry/wet mixing and
the length of the stereo rendering delay can be varied at run-time
by the host-computer. Table 2 shows the mapping results of the

Table 2: Mapping results of Digitar benchmark algorithm set

WP-partition #PAs
6-String 184
GuitarBody 1712
GearBoxModel 551
Distortion/Cabinet-model 1774

PU #Mapped PAs Utilization #Mapped DelayLines
1 738 41% 48
2 1714 95% 0
3 1775 99% 1
4 0 0% 0
5 0 0% 0

benchmark algorithm on the WaveCore/Atlys platform. The algo-
rithm requires 365 MFLOPS and the overall processor utilization
is 47% (2 idle PUs and the other ones not entirely loaded). Further-
more, the processing latency in the entire processing chain equals
only two sampling periods (shortest path in the chain). The ex-
ternal memory bandwidth for this algorithm equals 9.6 MBytes/s,
which is very modest. Hence, the real-time execution requirements
of the overall algorithm are easily fulfilled with zero processing jit-
ter.
Next to the described benchmark, we also applied another exper-
iment to fully load the WaveCore cluster with interconnected bi-
quad chains. We found that it is possible to compile 1710 biquad
filter instances, divided over 30 WP-partitions within a single WP.

7. CONCLUSIONS AND FUTURE WORK

We have developed a scalable coarse-grained reconfigurable data-
flow architecture, called WaveCore. WaveCore is optimized to the

1The Zita-Rev1 reverberator model has been generated from a Faust
source by an experimental Faust2WaveCore compiler

DAFX-7

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 8: Digitar benchmark setup.

application domain of audio and acoustical processing. The pro-
gramming model is declarative and based on explicit description of
hierarchical data-flow networks. We found that the programming
methodology is to a large extend compatible with Faust, which has
been demonstrated with an experimentally compiled ’Zita-Rev1’
reverberation algorithm. We have configured a WaveCore PU clus-
ter for the Digilent Atlys, and applied this flashed WaveCore/Atlys
board as a demonstrator platform.

We have developed a comprehensive digital effects processor for
this platform which serves as a combination of guitar-effects pro-
cessor and synthesizer with a DWG-based guitar model. The pro-
cessing latency is negligible (few audio sampling periods) with
zero processing jitter. The processing capacity of the demonstra-
tor WaveCore/Atlys board proves that the architecture is very effi-
cient.

Interesting target applications for the WaveCore technology range
from cost effective audio effects solutions (e.g. multi-effects gear),
to complex audio/acoustical modeling. The ultra low latency and
real-time guaranteed execution makes it possible to apply the tech-
nology to hybrid instruments. The declarative programming method-
ology enables efficient interfacing of the technology to a class of
functional languages with data-flow characteristics. Faust is an
obvious example of this, but other existing data-flow program-
ming methodologies are also interesting candidates. Functional
language interfacing is an interesting topic for future work. Fur-
ther benchmarking of the processor technology is also an interest-
ing topic for future work.

8. ACKNOWLEDGMENTS

We thank Edgar Berdahl (CCRMA) for many constructive discus-
sions on hybrid acoustical modeling, related to processor architec-
tures. We thank Andreas Degert (Guitarix) for his contribution
on the experimental "Faust2WaveCore" compiler which has re-
sulted in a fully automatically compiled "Zita-Rev1" reverberation
model. We also thank Jan Jacobs and Ramon Jongen from "Zuyd
University of Applied Sciences" for their constructive discussions
on architectures and signal processing applications.

9. REFERENCES

[1] Rolf Bader Florian Pfeifle, “Real-time finite difference phys-
ical models of musical instruments on a field programmable
gate array (fpga),” in Proc. of the 15th Int. Conference
on Digital Audio Effects (DAFx-12), York, UK, Sept. 17-21
2012.

[2] Math Verstraelen, Jan Kuper, and Gerard J.M. Smit,
“Wavecore: a reconfigurable mimd architecture,” Submitted
for publication, 2014.

[3] Stephane Letz Yann Orlarey, Dominique Fober,
“FAUST (programming language),” Available at
http://faust.grame.fr/, accessed Dec. 08, 2013.

[4] Digilent Inc., “Atlys Spartan-6 FPGA Development Board),”
Available at http://www.digilentinc.com/Products/, accessed
Jan. 21, 2014.

[5] Julius O. Smith, Ed., Physical Audio Signal Processing for
virtual musical instruments and digital audio effects, W3K
Publishing, USA, 2010.

[6] Julius O. Smith, “Zita-rev1,” Available at
https://ccrma.stanford.edu/ jos/pasp/Zita_Rev1.html, ac-
cessed Jan. 21, 2014.

[7] Kevin Karplus and Alex Strong, “Digital synthesis of
plucked-string and drum timbres,” Computer Music Journal,
vol. 7, no. 2, pp. 43–55, May 1983.

[8] Jonathan S. Abel David T. Yeh and Julius O. Smith, “Simpli-
fied, physically-informed models of distortion and overdrive
guitar effects pedals,” in Proc. of the 10th Int. Conference
on Digital Audio Effects (DAFx-07), Bordeaux, France, Sept.
10-15 2007.

[9] M. R. Schroeder and B. F. Logan, “Colorless artificial rever-
beration,” Journal of the Audio Engineering Society, vol. 9,
pp. 192–197, 1961.

[10] Udo Zolzer, DAFX: Digital Audio Effects, chapter Chapter 2:
Filters, pp. 55–56, John Wiley & Sons, Ltd, 2002.

DAFX-8

