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ABSTRACT
Automatic language identification for singing is a topic that has
not received much attention in the past years. Possible applica-
tion scenarios include searching for musical pieces in a certain lan-
guage, improvement of similarity search algorithms for music, and
improvement of regional music classification and genre classifica-
tion. It could also serve to mitigate the "glass ceiling" effect. Most
existing approaches employ PPRLM processing (Parallel Phone
Recognition followed by Language Modeling).
We present a new approach for singing language identification.
PLP, MFCC, and SDC features are extracted from audio files and
then passed through an i-vector extractor. This algorithm reduces
the training data for each sample to a single 450-dimensional fea-
ture vector. We then train Neural Networks and Support Vector
Machines on these feature vectors. Due to the reduced data, the
training process is very fast. The results are comparable to the state
of the art, reaching accuracies of 83% on a large speech corpus and
78% on acapella singing. In contrast to PPRLM approaches, our
algorithm does not require phoneme-wise annotations and is easier
to implement.

1. INTRODUCTION

Language Identification (LID) describes the task of automatically
detecting the language spoken in an audio document. In speech
recognition, LID has been a topic of interest for more than 30 years
and has been extensively researched. In the Music Information Re-
trieval field, a similar language identification can be performed for
singing (Singing Language Identification, SLID). There have so
far only been a handful of publications on SLID despite a number
of interesting application scenarios, such as:
Direct search of music in a certain language SLID can be use-

ful for private users who are, for example, looking for music
for a holiday video, or for music to help them learn a lan-
guage. Commercial users could use this for advertisement
videos.

Improvement of similarity search Similarity dimensions could
include the sung language.

Improvement of regional classification As mentioned in [1], hu-
man subjects tend to rely on the language to determine the
region of origin of a musical piece. This is not taken into
account by current regional classification systems.

Improvement of genre classification Similar to regional classi-
fication, certain musical genres are closely connected to a
single singing language. Considering the “glass ceiling”
of approximately 80% for most classification tasks[2], new
hybrid approaches are necessary to improve them. SLID
could serve this purpose, too.

Only a few SLID systems have been developed so far. They
mostly use the principle of Parallel Phone Recognition followed
by Language Modeling (PPRLM). In this paper, we present an
approach that does not require the extensive annotations used in
PPRLM. Our approach employs three commonly used audio fea-
tures with Multi-Layer Perceptrons (MLPs) and Support Vector
Machines (SVMs) as backend classifiers. Using the i-vector ex-
traction algorithm as a processing step in between, our approach is
able to surpass the state of the art.
We will give a more detailed overview over the state of the art in
section 2 before presenting the used datasets in section 3. We then
describe our proposed system in section 4 and show experimental
results in section 5. Finally, we draw conclusions in section 6 and
make suggestions for further research in section 7.

2. STATE OF THE ART

2.1. Language identification for speech

Language identification has been extensively researched in the field
of Automatic Speech Recognition since the 1980’s. A number
of successful algorithms have been developed over the years. An
overview over the fundamental techniques is given by Zissman in
[3].
Fundamentally, four properties of languages can be used to dis-
criminate between them:
Phonetics The unique sounds that are used in a given language.
Phonotactics The probabilities of certain phonemes and phoneme

sequences.
Prosody The “melody” of the spoken language.
Vocabulary The possible words made up by the phonemes and

the probabilities of certain combinations of words.
Even modern system mostly focus on phonetics and phonotactics
as the distinguishing factors between languages. Vocabulary is
sometimes exploited in the shape of language models.
Zissman mentions Parallel Phone Recognition followed by Lan-
guage Modeling (PPRLM) as one of the basic techniques. It re-
quires audio data, language annotations, and phoneme annotations
for each utterance. In order to make use of vocabulary character-
istics, full sentence annotations and word-to-phoneme dictionaries
are also necessary.
Using the audio and phoneme data, acoustic models are trained.
They describe the probabilities of certain sound and sound se-
quences occurring. This is done separately for each considered
language. Similarly, language models are generated using the sen-
tence annotations and the dictionary. These models describe the
probabilities of certain words and phrases. Again, this is done for
each language.
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New audio examples are then run through all pairs of acoustic and
language models, and the likelihoods produced by each model are
retained. The highest acoustic likelihood, the highest language
likelihood, or the highest combined likelihood are then considered
to determine the language. This approach achieves up to 79% ac-
curacy for ten languages [4].
Another approach uses the idea to train Gaussian Mixture Mod-
els for each language. This technique can be considered a “bag of
frames” approach, i.e. the single data frames are considered to be
statistically independent of each other. The generated GMMs then
describe probability densities for certain characteristics of each
language. Using these, the language of new audio examples can
be easily determined.
GMM approaches used to perform worse than their PPRLM coun-
terparts, but the development of new features has made the differ-
ence negligible [5]. They are in general easier to implement since
only audio examples and their language annotations are required.
Allen et al. [6] report results of up to 76.4% accuracy for ten
languages. Different backend classifiers, such as Multi-Layer Per-
ceptrons (MLPs) and Support Vector Machines (SVMs) [7] have
also been used succesfully instead of GMMs.

2.2. Special challenges in singing

Singing presents a number of challenges for language identifica-
tion when compared to pure speech. To mention a few examples:
Larger pitch fluctuations A singing voice varies its pitch to a

much higher degree than a speaking voice. It often also
has very different spectral properties.

Higher pronunciation variation Singers are often forced by the
music to pronounce certain sounds and words differently
than if they were speaking them.

Larger time variations In singing, sounds are often prolonged
for a certain amount of time to fit them to the music. Con-
versely, they can also be shortened or left out completely.

Different vocabulary In musical lyrics, words and phrases often
differ from normal conversation texts. Certain words and
phrases have different probabilities (e.g. higher focus on
emotional topics in singing).

Background music adds irrelevant data (for language identifica-
tion) to the signal, which acts as an interfering factor to the
algorithms. It therefore should be removed or suppressed
prior to the language identification, e.g. by source separa-
tion algorithms.
In this paper, we only work with a-capella music to remove
this difficulty.

So far, only a few approaches to perform language identification
on singing have been proposed.
Schwenninger et al. [8] use MFCC features, but do not mention
how they perform their actual model training. They test different
pre-processing techniques, such as vocal/non-vocal segmentation,
distortion reduction, and azimuth discrimination. None of these
techniques seem to improve the over-all results. They achieve an
accuracy of 68% on a-capella music for two languages (English
and German).
The approach of Tsai and Wang [9] follows a traditional PPRLM
flow. After vocal/non-vocal segmentation, they run their data through
acoustic models using vector tokenization. One acoustic model for
each language is used. The results are then processed by bigram
language models, again for each language. The language model
score is used for a maximum likelihood decision to determine the

language. They achieve results of 70% accuracy for two languages
(English and Mandarin).
Mehrabani and Hansen [10] also use a PPRLM system, with the
difference that all combinations of acoustic and language models
are tested. Their scores are combined by a classifier to determine
the final language. This results in a score of 78% for three lan-
guages (English, Hindi, and Mandarin). Combining this technique
with prosodic data improved the result even further.
Chandrasekhar et al.[11] try to determine the language for music
videos using both audio and video features. They achieve accu-
racies of close to 50% for 25 languages. It is interesting to note
that European languages seem to achieve much lower accuracies
than Asian and Arabic ones. English, French, German, Spanish
and Italian rank below 40%, while languages like Nepali, Arabic,
and Pashto achieve accuracies above 60%.
Finally, we previously tested a different system based on Gaus-
sian Mixture Models (GMMs) [12]. This approach does not re-
quire phoneme-wise annotations like the PPRLM approaches and
is easier to implement. We achieved an accuracy of 68% on three
languages (a-capella data).

3. DATASETS

In order to test our system on singing data, we used the data set
previously presented in [12]. It consists of a-capella songs down-
loaded from YouTube1. The songs are performed by amateur singers
in the languages English, German, and Spanish. We call it YTA-
cap.
For comparison, we also tested our algorithm on two well-known
speech data sets: The 2003 NIST Language Recognition Evalu-
ation (NIST2003LRE) corpus [13] and the OGI Multi-language
Telephone Speech Corpus (OGIMultilang)[14], using only the three
previously mentioned languages.
An overview over the amount of data across the three corpora is
given in table 1.

Table 1: Amounts of data in the three used data sets: Sum duration
on top, number of utterances in italics.

hh:mm:ss NIST2003LRE OGIMultilang YTAcap#Utterances

English 00:59:08 05:13:17 08:04:25
240 1912 1975

German 00:59:35 02:52:27 04:18:57
240 1059 1052

Spanish 00:59:44 03:05:45 07:21:55
240 1151 1810

1http://www.youtube.com/
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4. PROPOSED SYSTEM

Figure 1 shows a rough overview over our classification system. In
the following, we will describe the selected features, the i-vector
extraction algorithm, and the selected training backends in more
detail.

Figure 1: Overview of the steps of our classification system.

4.1. Features

We extracted a set of features for each audio file. Table 2 shows an
overview over the various configurations used in training.

Perceptive Linear Predictive features (PLPs) PLP features, first
introduced in [15], are among the most frequently used features in
speech processing. They are based on the idea to use knowledge
about human perception to emphasize important speech informa-
tion in spectra while minimizing the differences between speakers.
We use a model order of 13 in two experiments and one of 32 in
another. Deltas and double deltas between frames are also calcu-
lated. We test PLPs with and without RASTA pre-processing [16].

Mel-Frequency Cepstral Coefficients (MFCCs) Just like PLPs,
MFCCs are frequently used in all disciplines of automatic speech
recognition [3]. We kept 20 cepstral coefficients for model train-
ing. Additionally, we calculated deltas and double deltas.

Shifted Delta Cepstrum (SDCs) Shifted Delta Cepstrum fea-
tures were first described in [17] and have since been successfully
used for speaker verification and language identification tasks on
pure speech data [18] [7] [6]. They are calculated on MFCC vec-
tors and take their temporal evolution into account. Their configu-
ration is described by the four parameter N −d−P −k, where N
is the number of cepstral coefficients for each frame, d is the time
context (in frames) for the delta calculation, k is the number of
delta blocks to use, and P is the shift between consecutive blocks.
The delta cepstrals are then calculated as:

∆c(t) = c(t + iP + d) + c(t + iP − d), 0 <= i <= k (1)

with c ∈ [0, N − 1] as the previously extracted cepstral coeffi-
cients. The resulting k delta cepstrals for each frame are concate-
nated to form a single SDC vector of the length kN . We used the
common parameter combination N = 7, d = 1, P = 3, k = 7.

4.2. I-Vector extraction

I-Vector (identity vector) extraction was first introduced in [19]
and has since become a state-of-the-art technique for various speech
processing tasks, such as speaker verification, speaker recognition,
and language identification [20]. To our knowledge, it has not been
used for any Music Information Retrieval tasks before.
The main idea behind i-vectors is that all training utterances con-
tain some common trends, which effectively add irrelevance to the
data in respect to training. Using i-vector extraction, this irrele-
vance can be filtered out, while only the unique parts of the data
relevant to the task at hand remain. The dimensionality of the train-
ing data is massively reduced, which also makes the training less
computationally expensive. As a side effect, all feature matrices
are transformed to i-vectors of equal length, eliminating problems
that are caused by varying utterance lengths.
Mathematically, this assumption can be expressed as:

M(u) = m + Tw (2)

In this equation, M(u) is the GMM supervector for utterance u.
The supervector approach was first presented in [21] and has since
been successfully applied to a number of speech recognition prob-
lems. A music example can be found in [22]. m represents the
language- and channel-independent component of u and is esti-
mated using a Universal Background Model (UBM). T is a low-
rank matrix modeling the relevant language- and channel-related
variability, the so-called Total Variability Matrix. Finally, w is a
normally distributed latent variable vector: The i-vector for utter-
ance u.

Step 1: UBM training A Universal Background Model (UBM)
is trained using Gaussian Mixture Models (GMMs) from all utter-
ances. This UBM models the characteristics that are common to
all of them.

Step 2: Statistics extraction 0th and 1st order Baum-Welch
statistics are calculated for each of the utterances from the UBM
according to:

Nc(u) =

L∑
t=1

P (c|yt,Ω) (3)

F̃c(u) =

L∑
t=1

P (c|yt,Ω)(yt −mc) (4)
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Table 2: Feature configurations used in training.

Name Description Dimensions
PLP PLP with RASTA processing, model order 13 with deltas and double deltas 39

PLP36 PLP with RASTA processing, model order 36 with deltas and double deltas 96
PLP_NORASTA PLP without RASTA processing, model order 13 deltas and double deltas 39

MFCC MFCC, 20 coefficients 20
MFCCDELTA MFCC, 20 coefficients, deltas and double deltas 60

SDC SDC with configuration 7− 1− 3− 7 91
MFCCDELTASDC MFCCDELTA+SDC 117

COMB PLP_NORASTA+MFCCDELTA 99

where u = y1, y2, ..., yL denotes an utterance with L frames,
c = 1, ..., C denotes the index of the Gaussian component, Ω de-
notes the UBM, mc is the mean of the UBM mixture component
c, and P (c|yt,Ω) denotes the posterior probability that the frame
yt was generated by mixture component c. As the equation shows,
the 1st order statistics are centered around the mean of each mix-
ture component.

Step 3: T matrix training Using the Baum-Welch statistics for
all utterances, the Total Variability Matrix T is now trained itera-
tively according to:

w = (I + T tΣ−1N(u)T )−1T tΣ−1F̃ (u) (5)

using Expectation Maximization.

Step 4: Actual i-vector extraction Finally, an i-vector w can be
extracted for each utterance using equation 5 again. This can also
be done for unseen utterances, using a previously trained T .

4.3. Classification backend

For classification, we tested Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs).
The MLPs were fixed at three layers, with the middle layer having
a dimension of 256. They were implemented using Quicknet [23].
Additional layers did not seem to improve the result. A larger mid-
dle layer only improved it slightly.
The SVM parameters were determined using a grid-search. In the
full-feature experiments, we additionally employed a previous fea-
ture selection using the ”Inertia Ratio Maximization using Feature
Space Processing” (IRMFSP) [24]. For both IRMFSP and SVMs,
we used our own C++ implementation.

5. EXPERIMENTAL RESULTS

As described above, we performed experiments using both MLP
and SVM classifiers on all three data sets (NIST, OGI, and YTA-
cap). For each of those classifiers and data sets, we test all of the
combinations of features listed in table 2 directly and with i-vector
processing. All results were obtained using five-fold cross valida-
tion.

5.1. MLP results

Figure 2: Results for all feature combinations on the
NIST2003LRE database, using MLP classifiers.

NIST2003LRE As shown in figure 2, our MLP did not produce
good results on the NIST2003LRE database for any of the feature
combinations. NIST2003LRE is the smallest of the data sets by a
large margin. Since we use a relatively high dimensional model,
this is probably a case of overtraining. The i-vector processing
step reduces the training data even further, thus aggravating the
problem.

Figure 3: Results for all feature combinations on the OGIMulti-
lang database, using MLP classifiers.

DAFX-4



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

OGIMultilang The OGIMultilang data set contains roughly 4
times as much data as the NIST2003LRE set. With enough data,
training an MLP classifier works a lot better. Without i-vector pro-
cessing, we still only reach about 52% accuracy. I-Vector extrac-
tion improves the system massively. The best feature configura-
tions are plain PLP (82%), PLP_NORASTA (80%) and COMB
(80%).

Figure 4: Results for all feature combinations on the YTAcap
database, using MLP classifiers.

YTAcap In section 2.2, we described some factors that increase
the difficulty for language identification on acapella data versus
spoken data. As expected, the results on the YTAcap data set are
somewhat worse than those on OGIMultilang, even though they
contain a similar amount of data. The best result without i-vector
extraction is still obtained using the COMB feature configuration
at 56%. Similar to the OGIMultilang experiment, i-vector extrac-
tion yields a large improvement. COMB remains the best configu-
ration, now at 77%.

5.2. SVM results

Figure 5: Results for all feature combinations on the
NIST2003LRE database, using SVM classifiers.

NIST2003LRE In contrast to the MLP experiment, SVMs pro-
duced very good results on the NIST2003LRE data set for all of

the features. They seem to be able to discriminate almost perfectly
for this small, clean data set. We believe 94% might be an up-
per bound for the classification here, which might be caused by
annotation errors or ambiguous data.

Figure 6: Results for all feature combinations on the OGIMulti-
lang database, using SVM classifiers.

OGIMultilang The OGIMultilang corpus is bigger and more
varied than the NIST2003LRE corpus, which makes it harder to
classify. As shown, the high-dimensional pure features did not
produce good results, with a maximum of 50% for MFCCs. Fea-
ture selection using IRMFSP did nothing to improve this result
either. I-Vector extraction, however, improved the result by a large
margin. Feature-wise, PLP without RASTA processing seems to
work best at a result of 83%. MFCC and SDC features did not
work quite as well, but did not hurt the result either when com-
bined with PLPs (COMB result). It is interesting to see that the i-
vector extraction provided the smallest improvement for MFCCs,
the feature that worked best without it.

Figure 7: Results for all feature combinations on the YTAcap
database, using SVM classifiers.

YTAcap Similar to the OGIMultilang corpus, the YTAcap cor-
pus provides very complex and varied data. We see the same ef-
fects on the direct feature training here, too: MFCCs provide the
best results, but the accuracy is not very high at just 46%. IRMFSP
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still does not seem to be able to reduce the feature complexity in
a salient way. I-Vector extraction, again, serves to improve the re-
sult by a large percentage. The highest result when using i-vector
extraction is 78% when using PLP without RASTA processing or
the COMB configuration.

6. CONCLUSION

In this paper, we presented an approach for automatic language
identification on speech and acapella singing corpora. We used
PLP, MFCC, and SDC features, and ran them through an i-vector
extractor. We used the generated i-vectors as inputs for MLP and
SVM training. To our best knowledge, the i-vector approach is
new to music information retrieval. The basic idea behind it is
the removal of speaker- and channel-dependent components of the
signal. This effectively reduces irrelevance to the language iden-
tification tasks and also reduces the amount of training data mas-
sively.
Our smallest data set was the NIST 2003 Language Recognition
Evaluation (NIST2003LRE) corpus. We did not achieve good re-
sults for any feature configuration when using the MLP backend.
We believe that the small size of the corpus leads to overtraining.
I-Vector processing only amplified this problem by reducing the
amount of data even further. The SVM backend, however, pro-
duced good results of up to 94% for almost all features, with and
without i-vector extraction.
The OGIMultilang corpus is a much bigger speech corpus. Train-
ing without i-vector extraction did not work well for any feature
configuration. The best accuracy for this scenario was 52%. Fea-
ture selection using IRMFSP did not improve this result. I-Vector
extraction, however, improved the results for all feature configura-
tions immensely. We achieved results of up to 83% when i-vector
processing was performed. There does not seem to be a large dif-
ference between SVM and MLP training, with SVM having just a
slight advantage.
We expected language identification for singing to be a harder task
than for speech due to the factors described in section 2.2. The re-
sults on the YTAcap corpus turned out to be somewhat worse than
those for the OGIMultilang corpus, which is of similar size. We
observed the same effect as on OGIMultilang: Fairly bad results
on the raw features that improved by a large percentage through
i-vector extraction. In this case, the accuracy jumped from 56% to
78%.
In general, MLPs seem to work a little better when raw features
are used, while SVMs work better when i-vector processing is ap-
plied, but only by a small percentage.
Concerning the features, both PLPs and MFCCs seemed to be able
to discriminate between languages. PLPs worked best when no
RASTA pre-processing was used. We believe that this is because
the recordings are all relatively high quality and not heavily spec-
trally distorted. A higher model order did not significantly increase
the accuracy either.
MFCCs worked best when combined with deltas and double-deltas.
SDCs by themselves did not work as well as PLP or MFCC fea-
tures, but were able to increase the accuracy somewhat when com-
bined with MFCCs and their deltas. This confirms our observation
mentioned in [12].
The best accuracies were usually achieved when combining MFCCs,
MFCC deltas, and PLP features, both features covering different
relevant components.
When using an MLP backend, i-vector processing seems to in-

crease the accuracy roughly equally for each feature configuration.
Interestingly, this is not true for the SVM backend. In the SVM
experiments, MFCCs usually produced the best results when used
directly for training. I-Vector extraction provided the smallest im-
provement for this configuration, but improved the PLP configura-
tions much more.
Overall, i-vector extraction reduces irrelevance in the training data
and there leads to a more effective training. As additional bene-
fits, the training process itself is much faster and less memory is
used due to its data reduction properties. Using this system, we
achieve results that are comparable to the system described in [10]
and higher than other publications on the topic of singing language
identification. Most of these approaches are based on PPRLM,
which requires phoneme-wise annotations and a highly complex
recognition system, using both acoustic and language models. In
this respect, our system is easier to implement and merely requires
language annotations.

7. FUTURE WORK

Since our algorithm produced good results on acapella data, we
would now like to test it on polyphonic music. For this purpose,
we will integrate additional pre-processing techniques, such as vo-
cal activity detection and source separation.
We will then use the results produced by our language identifi-
cation algorithm to improve other classification solutions. Genre
classification and regional classification are of particular interest
here.
In this context, we will expand the music material to different
styles, such as opera music or especially non-western music.
We showed that the i-vector extraction algorithm improved our
classification accuracy by a large percentage. To our best knowl-
edge, it has not yet been applied to any other Music Information
Retrieval problems, such as genre recognition or emotion detec-
tion. We are going to investigate these applications as well.
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